A Triple integral
$begingroup$
While trying to obtain a Green's function for a PDE,I stumbled upon this integral
$displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$
How can I evaluate this triple integral?
fourier-transform greens-function
$endgroup$
add a comment |
$begingroup$
While trying to obtain a Green's function for a PDE,I stumbled upon this integral
$displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$
How can I evaluate this triple integral?
fourier-transform greens-function
$endgroup$
add a comment |
$begingroup$
While trying to obtain a Green's function for a PDE,I stumbled upon this integral
$displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$
How can I evaluate this triple integral?
fourier-transform greens-function
$endgroup$
While trying to obtain a Green's function for a PDE,I stumbled upon this integral
$displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$
How can I evaluate this triple integral?
fourier-transform greens-function
fourier-transform greens-function
edited Dec 25 '18 at 11:18
asked Dec 23 '18 at 17:40
user628607
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform
$$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
\
&= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
\
end{align*}$$
if I didn't make an error.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050546%2fa-triple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform
$$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
\
&= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
\
end{align*}$$
if I didn't make an error.
$endgroup$
add a comment |
$begingroup$
You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform
$$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
\
&= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
\
end{align*}$$
if I didn't make an error.
$endgroup$
add a comment |
$begingroup$
You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform
$$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
\
&= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
\
end{align*}$$
if I didn't make an error.
$endgroup$
You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform
$$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
\
&= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
\
&= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
\
&= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
\
end{align*}$$
if I didn't make an error.
edited Dec 23 '18 at 23:37
answered Dec 23 '18 at 23:31
Andy WallsAndy Walls
1,779139
1,779139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050546%2fa-triple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown