Espaço conexo
Em topologia e ramos relacionados da matemática, conexidade (português brasileiro) ou conectividade (português europeu) é a propriedade de um espaço conexo, isto é, um espaço topológico que não pode ser representado como a união de dois ou mais conjuntos abertos disjuntos e não-vazios.
Podemos ainda dizer que um conjunto X{displaystyle X} é conexo quando não admite outra cisão além da trivial. Neste caso se existirem conjuntos abertos A,B⊂X{displaystyle A,Bsubset X} tais que X=A∪B{displaystyle X=Acup B} com A∩B=∅{displaystyle Acap B=varnothing } então A=∅{displaystyle A=varnothing } ou B=∅.{displaystyle B=varnothing .}
Observemos que um subconjunto X{displaystyle X} admite uma cisão não-trivial quando existem conjuntos abertos A,B⊂X{displaystyle A,Bsubset X} tais que X=A∪B{displaystyle X=Acup B} com A∩B=∅.{displaystyle Acap B=varnothing .} Neste caso dizemos que X{displaystyle X} é desconexo.
Estas definições são válidas inclusive para o caso particular de X⊂Rn.{displaystyle Xsubset mathbb {R} ^{n}.}
Do ponto de vista da topologia dizemos que, um espaço topológico é desconexo se contém dois abertos complementares não vazios. Em caso contrário diz-se conexo.
Os subconjuntos ∅{displaystyle varnothing } e X{displaystyle X} são, ao mesmo tempo, abertos e fechados em qualquer topologia de X.{displaystyle X.} Se eles são os únicos conjuntos abertos e fechados, então X{displaystyle X} é conexo. Por outro lado, se existe A{displaystyle A} aberto e fechado com ∅⊂A⊂X,{displaystyle varnothing ,subset Asubset X,} então X{displaystyle X} é desconexo.
Índice
1 Definição Formal
2 Propriedades
3 Componentes conexas
4 Exemplos
5 Ver também
6 Referências
Definição Formal |
Um espaço topológico X{displaystyle X} é dito desconexo se for união de dois conjuntos disjuntos abertos não-vazios. Caso contrário, X{displaystyle X} é dito conexo.
Propriedades |
- Todo conjunto X⊂Rn{displaystyle Xsubset mathbb {R} ^{n}} admite pelo menos a cisão trivial X=X∪∅.{displaystyle X=Xcup varnothing .}
- A união de qualquer família de subespaços conexos de X,{displaystyle X,} cuja intersecção é não vazia, é um subespaço conexo de X{displaystyle X}'.
- A imagem de um conjunto conexo por uma aplicação contínua é um conjunto conexo.
- Todo conjunto homeomorfo a um conjunto conexo é também um conjunto conexo.
Componentes conexas |
- Uma componente conexa de um espaço topológico é um subespaço conexo maximal.
Exemplos |
R{displaystyle mathbb {R} } e C{displaystyle mathbb {C} } são conexos.
N,{displaystyle mathbb {N} ,} Z{displaystyle mathbb {Z} } e Q{displaystyle mathbb {Q} } são desconexos.- No R2,{displaystyle mathbb {R} ^{2},} o gráfico da função
- f(x)={sen1x,se x≠00,se x=0{displaystyle f(x)=left{{begin{matrix}{mbox{sen}}{frac {1}{x}},&{mbox{se }}xneq 0\0,&{mbox{se }}x=0end{matrix}}right.}
é conexo. Este é o contra-exemplo padrão de um espaço conexo que não é conexo por arcos.
Ver também |
- conexidade por arcos
conexidade simples.
Referências
Lima, Elon L. (2006), Curso de Análise Vol.2, ISBN 85-244-0049-8, Rio De Janeiro: IMPA .
Munkres, James R. (2000), Topology, ISBN 9780131816299, Prentice Hall, Incorporated .