Natürliche Zahl






Der Buchstabe N mit Doppelstrich
steht für die Menge der natürlichen Zahlen


Die natürlichen Zahlen sind die beim Zählen verwendeten Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 usw. Je nach Definition kann auch die 0 (Null) zu den natürlichen Zahlen gezählt werden. Die Menge der natürlichen Zahlen bildet mit der Addition und der Multiplikation zusammen eine mathematische Struktur, die als kommutativer Halbring bezeichnet wird.




Inhaltsverzeichnis






  • 1 Bezeichnungskonventionen


  • 2 Axiomatisierung


  • 3 Von Neumanns Modell der natürlichen Zahlen


  • 4 Die natürlichen Zahlen als Teilmenge der reellen Zahlen


  • 5 Siehe auch


  • 6 Literatur


  • 7 Weblinks


  • 8 Einzelnachweise





Bezeichnungskonventionen |


Die Menge der natürlichen Zahlen wird mit dem Formelzeichen N{displaystyle mathbb {N} }mathbb {N} abgekürzt. In der weitverbreiteten Zeichenkodierung Unicode ist es das Zeichen mit dem Codepoint (mit der „Nummer“) U+2115 (ℕ).


Sie umfasst entweder die positiven ganzen Zahlen (also ohne die 0)


N={1;2;3;…}{displaystyle mathbb {N} ={1;2;3;ldots }}N = {1; 2; 3; ldots}

oder die nichtnegativen ganzen Zahlen (also inklusive der 0)



N={0;1;2;3;…}{displaystyle mathbb {N} ={0;1;2;3;ldots }}N = {0; 1; 2; 3; ldots}.

Beide Konventionen werden uneinheitlich verwendet. Die ältere Tradition zählt die Null nicht zu den natürlichen Zahlen (die Null wurde in Europa erst ab dem 13. Jahrhundert gebräuchlich). Diese Definition ist gängiger in mathematischen Gebieten wie der Zahlentheorie, in denen die Multiplikation der natürlichen Zahlen im Vordergrund steht. In der Logik, der Mengenlehre und der Informatik[1] ist dagegen die Definition mit Null gebräuchlicher und vereinfacht die Darstellung. Nur mit letzterer Konvention bilden die natürlichen Zahlen mit der Addition ein Monoid. Im Zweifelsfall ist die verwendete Definition explizit zu nennen.


Für die Menge der natürlichen Zahlen ohne Null führte Dedekind 1888 das Symbol N ein.[2] Sein Symbol wird heute oft als Buchstabe N mit Doppelstrich stilisiert (N{displaystyle mathbb {N} }mathbb {N} oder IN{displaystyle mathrm {I!N} }mathrm {I!N} ). Ab 1894 gebrauchte Peano für die natürlichen Zahlen mit Null das Symbol N0, das heute ebenfalls stilisiert und nach Peano durch N0:=N∪{0}{displaystyle mathbb {N} _{0}:=mathbb {N} cup {0}}N_0:=Ncup{0} definiert wird.[3]


Wird jedoch das Symbol N{displaystyle mathbb {N} }mathbb {N} für die natürlichen Zahlen mit Null verwendet, dann wird die Menge der natürlichen Zahlen ohne Null mit N+, N+, N∗, N>0, N1 oder N∖{0}{displaystyle mathbb {N} _{+}{text{, }}mathbb {N} ^{+}{text{, }}mathbb {N} ^{*}{text{, }}mathbb {N} _{>0}{text{, }}mathbb {N} _{1},{text{ oder }},mathbb {N} setminus {0},}N_+text{, } N^+text{, } N^* text{, } N_{>0}text{, } N_{1} ,text{ oder }, Nsetminus{0}, bezeichnet. Die DIN-Norm 5473 verwendet zum Beispiel N{displaystyle mathbb {N} }mathbb {N} für die nichtnegativen ganzen Zahlen und N∗{displaystyle mathbb {N} ^{*}}mathbb N^* für die positiven ganzen Zahlen. Deutsche Schulbücher orientieren sich in einigen Bundesländern an dieser DIN-Norm, in anderen, z. B. in Bayern, nicht.


Letztlich ist es eine Frage der Definition, welche der beiden Mengen man als natürlicher ansehen und welcher man somit diese Bezeichnung als sprachliche Auszeichnung zukommen lassen will.



Axiomatisierung |


Richard Dedekind definierte 1888 erstmals die natürlichen Zahlen implizit durch Axiome.[2] Unabhängig von ihm stellte Giuseppe Peano 1889 ein einfacheres und zugleich formal präzises Axiomensystem auf.[4][5] Diese sogenannten Peano-Axiome haben sich durchgesetzt. Während sich das ursprüngliche Axiomensystem in Prädikatenlogik zweiter Stufe formalisieren lässt, wird heute oft eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird.[6] Andere Axiomatisierungen der natürlichen Zahlen, die mit der Peano-Arithmetik verwandt sind, sind beispielsweise die Robinson-Arithmetik und die primitiv rekursive Arithmetik.


Man kann die Peano-Axiome auch als Definition der natürlichen Zahlen auffassen. Eine Menge der natürlichen Zahlen ist dann eine solche Menge, die den Peano-Axiomen genügt. Wichtig ist, dass es unendlich viele solcher Mengen gibt. Jedoch verhält sich jede dieser Mengen völlig gleich, die Elemente sind lediglich anders bezeichnet. In der Mathematik sagt man, die Mengen sind isomorph. Dieses Resultat nennt man auch den Eindeutigkeitssatz von Dedekind. Dadurch hat man sich insbesondere konventionell geeignet „die natürlichen Zahlen“ zu sagen, obwohl es streng genommen unendlich viele solcher Mengen gibt.



Von Neumanns Modell der natürlichen Zahlen |


John von Neumann gab eine Möglichkeit an, die natürlichen Zahlen durch Mengen darzustellen, d. h., er beschrieb ein mengentheoretisches Modell der natürlichen Zahlen.


0:= ∅1:=0′={0}={∅}2:=1′={0,1}={∅,{∅}}3:=2′={0,1,2}={∅,{∅},{∅,{∅}}}⋮(n+1):=n′={0,1,…,n}=n∪{n}{displaystyle {begin{alignedat}{3}0&:=&&&&quad emptyset \1&:=0'&&={0}&&={emptyset }\2&:=1'&&={0,1}&&={emptyset ,{emptyset }}\3&:=2'&&={0,1,2}&&={emptyset ,{emptyset },{emptyset ,{emptyset }}}\&vdots &&&&\(n+1)&:=n'&&={0,1,ldots ,n}&&=ncup {n}end{alignedat}}}begin{alignat}{3}<br />
  0 &:=    && &&quad emptyset\<br />
  1 &:= 0' &&= {0}          &&= { emptyset }\<br />
  2 &:= 1' &&= {0, 1}       &&= { emptyset, { emptyset } }\<br />
  3 &:= 2' &&= {0, 1, 2}    &&= { emptyset, { emptyset }, { emptyset, { emptyset } } }\<br />
    &vdots&& &&\<br />
  (n+1) &:= n' &&= {0,1,ldots,n} &&= n cup {n}<br />
end{alignat}

Zur Erklärung: Für das Startelement, die „0“, ist die leere Menge {displaystyle emptyset }emptyset gewählt worden. Die „1“ ist hingegen die Menge, welche die leere Menge als Element enthält. Dies sind verschiedene Mengen, denn die leere Menge „0“={} enthält kein Element, wohingegen die Menge „1“={0} genau ein Element enthält.


Die Nachfolgermenge ist definiert als die Vereinigung der Vorgängermenge und der Menge, die die Vorgängermenge enthält. Die Menge, die die Vorgängermenge enthält (sie ist also nicht leer), und die Vorgängermenge sind disjunkt, deshalb ist jede Nachfolgermenge von der Vorgängermenge verschieden. Hieraus ergibt sich insbesondere die Injektivität der so definierten Nachfolgerfunktion. Somit genügt diese den Peano-Axiomen.


Die Existenz jeder einzelnen natürlichen Zahl ist mengentheoretisch schon durch recht schwache Forderungen gesichert. Für die Existenz der Menge aller natürlichen Zahlen N{displaystyle mathbb {N} }mathbb {N} sowie N0{displaystyle mathbb {N} _{0}}mathbb {N} _{0} benötigt man jedoch in der Zermelo-Fraenkel-Mengenlehre ein eigenes Axiom, das sogenannte Unendlichkeitsaxiom.


Eine Verallgemeinerung dieser Konstruktion (Wegfall des fünften Peano-Axioms bzw. Zulassung von weiteren Zahlen ohne Vorgänger) ergibt die Ordinalzahlen.



Die natürlichen Zahlen als Teilmenge der reellen Zahlen |


Die Einführung der natürlichen Zahlen mit Hilfe der Peano-Axiome ist eine Möglichkeit, die Theorie der natürlichen Zahlen zu begründen. Als Alternative kann man beim Körper R{displaystyle mathbb {R} }mathbb {R} der reellen Zahlen axiomatisch einsteigen und die natürlichen Zahlen als Teilmenge von R{displaystyle mathbb {R} }mathbb {R} definieren.[7] Dazu benötigt man zunächst den Begriff einer induktiven Menge.


Eine Teilmenge M{displaystyle M}M von R{displaystyle mathbb {R} }mathbb {R} heißt induktiv, wenn folgende Bedingungen erfüllt sind:



  1. 0 ist Element von M.{displaystyle M.}M.

  2. Ist x{displaystyle x}x Element von M{displaystyle M}M, so ist auch x+1{displaystyle x+1}x+1 Element von M.{displaystyle M.}M.


Dann ist N0{displaystyle mathbb {N} _{0}}mathbb {N} _{0} der Durchschnitt aller induktiven Teilmengen von R.{displaystyle mathbb {R} .}R.



Siehe auch |



  • Zahlensystem

  • Liste besonderer Zahlen



Literatur |




  • Bertrand Russell: Einführung in die mathematische Philosophie. Drei-Masken, München 1919, F. Meiner, Hamburg 2006, ISBN 3-7873-1602-7.

  • Johannes Lenhard, Michael Otte (Hrsg.): Einführung in die mathematische Philosophie. F. Meiner, Hamburg 2002, ISBN 3-7873-1602-7.


  • Harald Scheid: Zahlentheorie. 2. Auflage. BI-Wiss.-Verl., Mannheim 1994, ISBN 3-411-14842-X.


  • Wolfgang Rautenberg: Messen und Zählen. Heldermann Verlag, Lemgo 2007, ISBN 978-3-88538-118-1. 



Weblinks |



 Wiktionary: natürliche Zahl – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen


Einzelnachweise |




  1. z. B. Edsger W. Dijkstra: Why numbering should start at zero. 11. August 1982


  2. ab Dedekind: Was sind und was sollen die Zahlen? Braunschweig 1888.


  3. Peano: Opere scelte. II, S. 124. Definition in: Peano: Opere scelte. III, S. 225.


  4. Peano: Arithmetices principia nova methodo exposita. Turin 1889.


  5. Zur Unabhängigkeit von Dedekind siehe: Hubert Kennedy: The origins of modern Axiomatics. In: American Mathematical monthly. 79 (1972), S. 133–136. Auch in: Kennedy: Giuseppe Peano. San Francisco 2002, S. 35 f.


  6. Rautenberg (2007), Kap. 11.


  7. Martin Barner, Friedrich Flohr: Analysis I. Walter de Gruyter, Berlin 2000, ISBN 978-3110167795, S. 21–23.








Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten