Largest value of determinant
$begingroup$
If $alpha,beta,gamma in [-3,10].$ Then largest value of the determinant
$$begin{vmatrix}3alpha^2&beta^2+alphabeta+alpha^2&gamma^2+alphagamma+alpha^2\\
alpha^2+alphabeta+beta^2& 3beta^2&gamma^2+betagamma+beta^2\\
alpha^2+alphagamma+gamma^2& beta^2+betagamma+gamma^2&3gamma^2end{vmatrix}$$
Try: I am trying to break that determinant into product of 2 determinants but not able to break it.
Could someone help me in this question? Thanks.
linear-algebra determinant
$endgroup$
add a comment |
$begingroup$
If $alpha,beta,gamma in [-3,10].$ Then largest value of the determinant
$$begin{vmatrix}3alpha^2&beta^2+alphabeta+alpha^2&gamma^2+alphagamma+alpha^2\\
alpha^2+alphabeta+beta^2& 3beta^2&gamma^2+betagamma+beta^2\\
alpha^2+alphagamma+gamma^2& beta^2+betagamma+gamma^2&3gamma^2end{vmatrix}$$
Try: I am trying to break that determinant into product of 2 determinants but not able to break it.
Could someone help me in this question? Thanks.
linear-algebra determinant
$endgroup$
add a comment |
$begingroup$
If $alpha,beta,gamma in [-3,10].$ Then largest value of the determinant
$$begin{vmatrix}3alpha^2&beta^2+alphabeta+alpha^2&gamma^2+alphagamma+alpha^2\\
alpha^2+alphabeta+beta^2& 3beta^2&gamma^2+betagamma+beta^2\\
alpha^2+alphagamma+gamma^2& beta^2+betagamma+gamma^2&3gamma^2end{vmatrix}$$
Try: I am trying to break that determinant into product of 2 determinants but not able to break it.
Could someone help me in this question? Thanks.
linear-algebra determinant
$endgroup$
If $alpha,beta,gamma in [-3,10].$ Then largest value of the determinant
$$begin{vmatrix}3alpha^2&beta^2+alphabeta+alpha^2&gamma^2+alphagamma+alpha^2\\
alpha^2+alphabeta+beta^2& 3beta^2&gamma^2+betagamma+beta^2\\
alpha^2+alphagamma+gamma^2& beta^2+betagamma+gamma^2&3gamma^2end{vmatrix}$$
Try: I am trying to break that determinant into product of 2 determinants but not able to break it.
Could someone help me in this question? Thanks.
linear-algebra determinant
linear-algebra determinant
edited 1 hour ago
StubbornAtom
6,74931442
6,74931442
asked 1 hour ago
DXTDXT
5,9812733
5,9812733
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Using the rules of SARRUS we get after simplifying $$- left( alpha-gamma right) ^{2} left( beta-gamma right) ^{2}
left( beta-alpha right) ^{2}
$$
$endgroup$
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
add a comment |
$begingroup$
Hint: The matrix is symmetric. You can use the Cholesky decomposition to rewrite the matrix $A$ as $A=LL^T$, in which $L$ is a lower triangular matrix. Then the determinant is $det A = det L det L^T = det^2 L$. Then $det L$ is given by the product of the diagonal elements of $L$ as it is a lower triangular matrix.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204547%2flargest-value-of-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Using the rules of SARRUS we get after simplifying $$- left( alpha-gamma right) ^{2} left( beta-gamma right) ^{2}
left( beta-alpha right) ^{2}
$$
$endgroup$
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
add a comment |
$begingroup$
Hint: Using the rules of SARRUS we get after simplifying $$- left( alpha-gamma right) ^{2} left( beta-gamma right) ^{2}
left( beta-alpha right) ^{2}
$$
$endgroup$
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
add a comment |
$begingroup$
Hint: Using the rules of SARRUS we get after simplifying $$- left( alpha-gamma right) ^{2} left( beta-gamma right) ^{2}
left( beta-alpha right) ^{2}
$$
$endgroup$
Hint: Using the rules of SARRUS we get after simplifying $$- left( alpha-gamma right) ^{2} left( beta-gamma right) ^{2}
left( beta-alpha right) ^{2}
$$
answered 1 hour ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.9k42867
79.9k42867
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
add a comment |
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
I think so! What result do you get?
$endgroup$
– Dr. Sonnhard Graubner
57 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
This is nice to hear!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
$begingroup$
A big typo is only a typo, big or not!
$endgroup$
– Dr. Sonnhard Graubner
55 mins ago
add a comment |
$begingroup$
Hint: The matrix is symmetric. You can use the Cholesky decomposition to rewrite the matrix $A$ as $A=LL^T$, in which $L$ is a lower triangular matrix. Then the determinant is $det A = det L det L^T = det^2 L$. Then $det L$ is given by the product of the diagonal elements of $L$ as it is a lower triangular matrix.
$endgroup$
add a comment |
$begingroup$
Hint: The matrix is symmetric. You can use the Cholesky decomposition to rewrite the matrix $A$ as $A=LL^T$, in which $L$ is a lower triangular matrix. Then the determinant is $det A = det L det L^T = det^2 L$. Then $det L$ is given by the product of the diagonal elements of $L$ as it is a lower triangular matrix.
$endgroup$
add a comment |
$begingroup$
Hint: The matrix is symmetric. You can use the Cholesky decomposition to rewrite the matrix $A$ as $A=LL^T$, in which $L$ is a lower triangular matrix. Then the determinant is $det A = det L det L^T = det^2 L$. Then $det L$ is given by the product of the diagonal elements of $L$ as it is a lower triangular matrix.
$endgroup$
Hint: The matrix is symmetric. You can use the Cholesky decomposition to rewrite the matrix $A$ as $A=LL^T$, in which $L$ is a lower triangular matrix. Then the determinant is $det A = det L det L^T = det^2 L$. Then $det L$ is given by the product of the diagonal elements of $L$ as it is a lower triangular matrix.
answered 1 hour ago
MachineLearnerMachineLearner
1,906213
1,906213
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204547%2flargest-value-of-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown