Espaço fásico
Espaço de fases ou espaço fásico é definido como o espaço formado pelas posições generalizadas e seus momentos conjugados correspondentes. Se emprega no contexto da mecânica lagrangiana e a mecânica hamiltoniana. Usualmente se designa o espaço fásico ou uma parte dele por Γ (gamma maiúscula). Fisicamente cada ponto do espaço fásico representa um possível estado do sistema mecânico.
Em física estatística se usam distribuições de probabilidade definidas sobre o espaço fásico. Partindo de certo subconjunto das distribuições de probabilidade de um espaço fásico pode construir-se uma estrutura de espaço de Hilbert. Estes espaços de Hilbert de um sistema clássico são a base para os espaços de Hilbert que aparecem na mecânica quântica.
Índice
1 Espaço de fases na mecânica clássica
2 Espaço de fases em mecânica quântica
2.1 Quantização a partir do espaço fásico clássico
3 Termodinâmica e mecânica estatística
4 Referências
5 Ligações externas
Espaço de fases na mecânica clássica |
Em mecânica clássica o espaço de fases é uma construção matemática a partir do espaço de configuração. Concretamente um espaço de fases adequado para um sistema com um número finito de graus de libertade é um fibrado tangente do espaço de configuração do sistema mecânico.
Esse fibrado tangente construído dessa maneira pode ainda ser dotado de uma topologia simplética onde podem formular-se convenientemente os teoremas da mecânica hamiltoniana.
Um dos teoremas clássicos sobre espaços de fases é o teorema de Liouville, segundo o qual uma nuvem de pontos distribuídos de acordo com uma densidade de probabilidade que represente um estado de equilíbrio macroscópico ρ(pi,qi) deve ser invariável no tempo.
Além disto cada hamiltoniano H definido sobre um espaço de fases está associado a um conjunto de trajetórias de evolução temporal. O conjunto de trajetórias constitui uma foliação unidimensional do espaço de fases que recobre quase todo o espaço de fases (concretamente todo o espaço de fases, salvo um conjunto de medida nula), este último equivale a que o espaço pode ser descomposto em trajetórias que não se intersectam.
Espaço de fases em mecânica quântica |
Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados.
Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).
O estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:
A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.
Quantização a partir do espaço fásico clássico |
Ver artigo principal: Quantização
Em física estatística se empregam distribuições de probabilidade sobre o espaço fásico, este conjunto de distribuições de probabilidade pode dotar-se de estrutura de espaço de Hilbert. É precisamente sobre esta abstração última que se constrói a mecânica quântica onde não se empregam espaços de configuração, senão diretamente espaços de Hilbert. O estado de um sistema quântico se define como uma "função de onda" que não é outra coisa que um elemento ou vetor deste espaço de Hilbert (concretamente o estado do sistema é uma classe de equivalência de vetores do espaço de Hilbert).
Termodinâmica e mecânica estatística |
Nos contextos da termodinâmica e da mecânica estatística, o termo espaço de fase tem dois significados:
- É usado no mesmo sentido que em mecânica clássica. Se um sistema termodinâmico consiste de N partículas, então um ponto no espaço de fase 6N-dimensional descreve o estado dinâmico de cada partícula neste sistema.[1] Neste sentido, um ponto no espaço de fase é dito ser um microestado do sistema. N é tipicamente da ordem do número de Avogadro, então descrever o sistema em um nível microscópico é frequentemente impraticável. Isto conduz ao uso do espaço de fase em um sentido diferente.
- Em outras palavras e em caso específico: nas N moléculas de um sistema, se estas forem monoatômicas, existem 3N graus de liberdade. Num espaço 6N-dimensional (o espaço das fases ou espaço fásico, Γ, com 3N eixos coordenados para as componentes das posições e 3N eixos para as componentes dos momentos lineares) o microestado do sistema, no instante t, será representado por um único ponto.[2]
- O espaço de fase pode referir-se ao espaço que é parametrizado pelos estados macroscópicos do sistema, tal como pressão, temperatura, etc. Por exemplo, um pode focar o diagrama pressão-volume ou os diagramas entropia-temperatura como parte descrita deste estado de fase. Um ponto neste espaço de fase é correspondentemente chamado um macroestado. Pode facilmente haver mais de um microestado com o mesmo macroestado. Por exemplo, para uma temperadura dada, o sistema pode ter muitas configurações dinãmica ao nível microscópico. Quando usado neste sentido, uma fase é uma região do espaço de fase aonde o sistema em questão está em, por exemplo, a fase líquida, ou fase sólida, etc.
Desde que há muito mais microestados que macroestados, o espaço de fase no primeiro sentido é usualmente uma distribuição de dimensões muito maior do que o segundo sentido. Claramente, muitos mais parâmetros são requeridos para descrever cada detalhe do sistema da escala molecular ou atômica que a simplesmente específica, digamos, temperatura ou pressão do sistema.
Referências
↑ «Fernando M.S.Silva Fernandes; Notas para Química Computacional I; - elixir.dqb.fc.ul.pt» (PDF). Consultado em 7 de julho de 2008. Arquivado do original (PDF) em 26 de junho de 2007
↑ «FERNANDO M.S. SILVA FERNANDES; Cinquentenário da Simulação Computacional em Mecânica Estatística - www.dqb.fc.ul.pt» (PDF). Consultado em 7 de julho de 2008. Arquivado do original (PDF) em 11 de junho de 2007
Ligações externas |
Phase Space: a Framework for Statistics em hyperphysics.phy-astr.gsu.edu (em inglês)
PHASE SPACE - TERENCE TAO - www.math.ucla.edu (em inglês)