$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3}$
$begingroup$
We have $f(x) = sum_{i=0}^infty a_ix^i$. We know that $f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3}$.
We need to find $a_0, a_1, a_2$.
Also we need to find numbers $r, s, t$ from $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3.
I already get that $f(x) =sum_{i=0}^infty x^i times sum_{k=0}^infty x^{2k} times sum_{j=0}^infty x^{3j}$.
I am sure that this problem is connected to this.
Also there is a problem connected with two first ones: To write generating function for calculating number of integer solutions of the equation: $x_1 + 2x_2 + 3x_3 = n$.
Thank you and merry Christmas!
combinatorics
$endgroup$
add a comment |
$begingroup$
We have $f(x) = sum_{i=0}^infty a_ix^i$. We know that $f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3}$.
We need to find $a_0, a_1, a_2$.
Also we need to find numbers $r, s, t$ from $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3.
I already get that $f(x) =sum_{i=0}^infty x^i times sum_{k=0}^infty x^{2k} times sum_{j=0}^infty x^{3j}$.
I am sure that this problem is connected to this.
Also there is a problem connected with two first ones: To write generating function for calculating number of integer solutions of the equation: $x_1 + 2x_2 + 3x_3 = n$.
Thank you and merry Christmas!
combinatorics
$endgroup$
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17
add a comment |
$begingroup$
We have $f(x) = sum_{i=0}^infty a_ix^i$. We know that $f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3}$.
We need to find $a_0, a_1, a_2$.
Also we need to find numbers $r, s, t$ from $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3.
I already get that $f(x) =sum_{i=0}^infty x^i times sum_{k=0}^infty x^{2k} times sum_{j=0}^infty x^{3j}$.
I am sure that this problem is connected to this.
Also there is a problem connected with two first ones: To write generating function for calculating number of integer solutions of the equation: $x_1 + 2x_2 + 3x_3 = n$.
Thank you and merry Christmas!
combinatorics
$endgroup$
We have $f(x) = sum_{i=0}^infty a_ix^i$. We know that $f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3}$.
We need to find $a_0, a_1, a_2$.
Also we need to find numbers $r, s, t$ from $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3.
I already get that $f(x) =sum_{i=0}^infty x^i times sum_{k=0}^infty x^{2k} times sum_{j=0}^infty x^{3j}$.
I am sure that this problem is connected to this.
Also there is a problem connected with two first ones: To write generating function for calculating number of integer solutions of the equation: $x_1 + 2x_2 + 3x_3 = n$.
Thank you and merry Christmas!
combinatorics
combinatorics
edited Dec 24 '18 at 8:24
O.Joen
asked Dec 24 '18 at 0:08
O.JoenO.Joen
13
13
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17
add a comment |
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For a start.
Consider that
$$f(x)(1+2x+2x^2+x^3)(1-x)^3=1$$ must hold for any $x$ that is say
$$(1-x-x^2+x^4+x^5-x^6)f(x)=1$$ Replace $f(x)$ by a few terms (since you just want $a_0,a_1,a_2$) and identify the coefficients.
$endgroup$
add a comment |
$begingroup$
Your finding is correct. Indeed:
$$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3} Rightarrow \\
f(x)(1+x)(1+x+x^2)=frac{1}{(1-x)^3} Rightarrow \
f(x)=frac{1}{(1-x)(1-x^2)(1-x^3)}=sum_{i=0}^{infty} x^isum_{j=0}^{infty} x^{2j}sum_{k=0}^{infty} x^{3k} Rightarrow\
i+2j+3k=n, i,j,k,nge 0.$$
So, if you need to find a few terms:
$$begin{align}n&=0Rightarrow (0,0,0) Rightarrow a_0=1;\
n&=1 Rightarrow (1,0,0) Rightarrow a_1=1;\
n&=2 Rightarrow (2,0,0), (0,1,0) Rightarrow a_2=2;\
n&=3 Rightarrow (3,0,0), (1,1,0), (0,0,1) Rightarrow a_3=3.end{align}$$
Wolfram answer.
For more, you can see here.
$endgroup$
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050825%2ffx12x2x2x3-frac11-x3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For a start.
Consider that
$$f(x)(1+2x+2x^2+x^3)(1-x)^3=1$$ must hold for any $x$ that is say
$$(1-x-x^2+x^4+x^5-x^6)f(x)=1$$ Replace $f(x)$ by a few terms (since you just want $a_0,a_1,a_2$) and identify the coefficients.
$endgroup$
add a comment |
$begingroup$
For a start.
Consider that
$$f(x)(1+2x+2x^2+x^3)(1-x)^3=1$$ must hold for any $x$ that is say
$$(1-x-x^2+x^4+x^5-x^6)f(x)=1$$ Replace $f(x)$ by a few terms (since you just want $a_0,a_1,a_2$) and identify the coefficients.
$endgroup$
add a comment |
$begingroup$
For a start.
Consider that
$$f(x)(1+2x+2x^2+x^3)(1-x)^3=1$$ must hold for any $x$ that is say
$$(1-x-x^2+x^4+x^5-x^6)f(x)=1$$ Replace $f(x)$ by a few terms (since you just want $a_0,a_1,a_2$) and identify the coefficients.
$endgroup$
For a start.
Consider that
$$f(x)(1+2x+2x^2+x^3)(1-x)^3=1$$ must hold for any $x$ that is say
$$(1-x-x^2+x^4+x^5-x^6)f(x)=1$$ Replace $f(x)$ by a few terms (since you just want $a_0,a_1,a_2$) and identify the coefficients.
answered Dec 24 '18 at 7:44
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
$begingroup$
Your finding is correct. Indeed:
$$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3} Rightarrow \\
f(x)(1+x)(1+x+x^2)=frac{1}{(1-x)^3} Rightarrow \
f(x)=frac{1}{(1-x)(1-x^2)(1-x^3)}=sum_{i=0}^{infty} x^isum_{j=0}^{infty} x^{2j}sum_{k=0}^{infty} x^{3k} Rightarrow\
i+2j+3k=n, i,j,k,nge 0.$$
So, if you need to find a few terms:
$$begin{align}n&=0Rightarrow (0,0,0) Rightarrow a_0=1;\
n&=1 Rightarrow (1,0,0) Rightarrow a_1=1;\
n&=2 Rightarrow (2,0,0), (0,1,0) Rightarrow a_2=2;\
n&=3 Rightarrow (3,0,0), (1,1,0), (0,0,1) Rightarrow a_3=3.end{align}$$
Wolfram answer.
For more, you can see here.
$endgroup$
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
add a comment |
$begingroup$
Your finding is correct. Indeed:
$$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3} Rightarrow \\
f(x)(1+x)(1+x+x^2)=frac{1}{(1-x)^3} Rightarrow \
f(x)=frac{1}{(1-x)(1-x^2)(1-x^3)}=sum_{i=0}^{infty} x^isum_{j=0}^{infty} x^{2j}sum_{k=0}^{infty} x^{3k} Rightarrow\
i+2j+3k=n, i,j,k,nge 0.$$
So, if you need to find a few terms:
$$begin{align}n&=0Rightarrow (0,0,0) Rightarrow a_0=1;\
n&=1 Rightarrow (1,0,0) Rightarrow a_1=1;\
n&=2 Rightarrow (2,0,0), (0,1,0) Rightarrow a_2=2;\
n&=3 Rightarrow (3,0,0), (1,1,0), (0,0,1) Rightarrow a_3=3.end{align}$$
Wolfram answer.
For more, you can see here.
$endgroup$
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
add a comment |
$begingroup$
Your finding is correct. Indeed:
$$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3} Rightarrow \\
f(x)(1+x)(1+x+x^2)=frac{1}{(1-x)^3} Rightarrow \
f(x)=frac{1}{(1-x)(1-x^2)(1-x^3)}=sum_{i=0}^{infty} x^isum_{j=0}^{infty} x^{2j}sum_{k=0}^{infty} x^{3k} Rightarrow\
i+2j+3k=n, i,j,k,nge 0.$$
So, if you need to find a few terms:
$$begin{align}n&=0Rightarrow (0,0,0) Rightarrow a_0=1;\
n&=1 Rightarrow (1,0,0) Rightarrow a_1=1;\
n&=2 Rightarrow (2,0,0), (0,1,0) Rightarrow a_2=2;\
n&=3 Rightarrow (3,0,0), (1,1,0), (0,0,1) Rightarrow a_3=3.end{align}$$
Wolfram answer.
For more, you can see here.
$endgroup$
Your finding is correct. Indeed:
$$f(x)(1+2x+2x^2+x^3)=frac{1}{(1-x)^3} Rightarrow \\
f(x)(1+x)(1+x+x^2)=frac{1}{(1-x)^3} Rightarrow \
f(x)=frac{1}{(1-x)(1-x^2)(1-x^3)}=sum_{i=0}^{infty} x^isum_{j=0}^{infty} x^{2j}sum_{k=0}^{infty} x^{3k} Rightarrow\
i+2j+3k=n, i,j,k,nge 0.$$
So, if you need to find a few terms:
$$begin{align}n&=0Rightarrow (0,0,0) Rightarrow a_0=1;\
n&=1 Rightarrow (1,0,0) Rightarrow a_1=1;\
n&=2 Rightarrow (2,0,0), (0,1,0) Rightarrow a_2=2;\
n&=3 Rightarrow (3,0,0), (1,1,0), (0,0,1) Rightarrow a_3=3.end{align}$$
Wolfram answer.
For more, you can see here.
answered Dec 24 '18 at 9:47
farruhotafarruhota
21.8k2842
21.8k2842
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
add a comment |
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
$begingroup$
Thank you very much for your comment. Could I have one more minute of your attention for explaining how can i get to $a_n=D(3,n)-ra_{n-1}-sa_{n-2}-ta_{n-3}$ for n≥3?
$endgroup$
– O.Joen
Dec 24 '18 at 10:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050825%2ffx12x2x2x3-frac11-x3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
you can use Partal Fraction Decomposition
$endgroup$
– miracle173
Dec 24 '18 at 8:17