Prove $a_n = sqrt{n+1}-sqrt{n}$ is monotone $n ge 0$.
$begingroup$
Prove $a_n = sqrt{n+1}-sqrt{n}$ is monotone $n ge 0$.
To be monotone it must be either increasing or decreasing, so:
$a_n ge a_{n-1}$ or $a_n le a_{n-1}$
$sqrt{n+1}-sqrt{n} ge? sqrt{n}-sqrt{n-1} $
$sqrt{n+1}+sqrt{n-1} ge? sqrt{n} + sqrt{n}$
I know that $sqrt{n+1} ge sqrt{n}$ and $sqrt{n} ge sqrt{n-1}$
But I can't make a statement about their sum since they have opposite signs that is one is greater or equal and the other is less or equal.
Can you help me to figure out the solution?
analysis monotone-functions
$endgroup$
add a comment |
$begingroup$
Prove $a_n = sqrt{n+1}-sqrt{n}$ is monotone $n ge 0$.
To be monotone it must be either increasing or decreasing, so:
$a_n ge a_{n-1}$ or $a_n le a_{n-1}$
$sqrt{n+1}-sqrt{n} ge? sqrt{n}-sqrt{n-1} $
$sqrt{n+1}+sqrt{n-1} ge? sqrt{n} + sqrt{n}$
I know that $sqrt{n+1} ge sqrt{n}$ and $sqrt{n} ge sqrt{n-1}$
But I can't make a statement about their sum since they have opposite signs that is one is greater or equal and the other is less or equal.
Can you help me to figure out the solution?
analysis monotone-functions
$endgroup$
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29
add a comment |
$begingroup$
Prove $a_n = sqrt{n+1}-sqrt{n}$ is monotone $n ge 0$.
To be monotone it must be either increasing or decreasing, so:
$a_n ge a_{n-1}$ or $a_n le a_{n-1}$
$sqrt{n+1}-sqrt{n} ge? sqrt{n}-sqrt{n-1} $
$sqrt{n+1}+sqrt{n-1} ge? sqrt{n} + sqrt{n}$
I know that $sqrt{n+1} ge sqrt{n}$ and $sqrt{n} ge sqrt{n-1}$
But I can't make a statement about their sum since they have opposite signs that is one is greater or equal and the other is less or equal.
Can you help me to figure out the solution?
analysis monotone-functions
$endgroup$
Prove $a_n = sqrt{n+1}-sqrt{n}$ is monotone $n ge 0$.
To be monotone it must be either increasing or decreasing, so:
$a_n ge a_{n-1}$ or $a_n le a_{n-1}$
$sqrt{n+1}-sqrt{n} ge? sqrt{n}-sqrt{n-1} $
$sqrt{n+1}+sqrt{n-1} ge? sqrt{n} + sqrt{n}$
I know that $sqrt{n+1} ge sqrt{n}$ and $sqrt{n} ge sqrt{n-1}$
But I can't make a statement about their sum since they have opposite signs that is one is greater or equal and the other is less or equal.
Can you help me to figure out the solution?
analysis monotone-functions
analysis monotone-functions
asked Dec 1 '18 at 20:26
Sargis IskandaryanSargis Iskandaryan
560112
560112
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29
add a comment |
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Note that, for $ngeq 1$,
$$ (sqrt{n+1}+sqrt{n-1})^2 = n+1+2sqrt{n^2-1}+n-1 = 2n+2sqrt{n^2-1}leq 2n +2n=4n, $$
so that
$$ sqrt{n+1}+sqrt{n-1} leq 2sqrt{n} quad iffquad sqrt{n+1}- sqrt n leq sqrt n - sqrt{n-1}. $$
$endgroup$
add a comment |
$begingroup$
hint
use the conjugate
$$a_n=frac{1}{sqrt{n+1}+sqrt{n}}=frac{1}{b_n}$$
now prove tha $(b_n)$ is increasing and conclude that $(a_n)$ is decreasing.
$endgroup$
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
add a comment |
$begingroup$
$$
\a_{n+1}le a_{n}<=>
\sqrt{n+1}+sqrt{n-1}le2sqrt{n}<=>
\(sqrt{n+1}+sqrt{n-1})^2le(2sqrt{n})^2<=>
\sqrt{(n-1)(n+1)}=sqrt{n^2-1}le sqrt{n^2}=n
$$
$endgroup$
add a comment |
$begingroup$
Square to $2n+2sqrt{n^2-1}le 4n$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021788%2fprove-a-n-sqrtn1-sqrtn-is-monotone-n-ge-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that, for $ngeq 1$,
$$ (sqrt{n+1}+sqrt{n-1})^2 = n+1+2sqrt{n^2-1}+n-1 = 2n+2sqrt{n^2-1}leq 2n +2n=4n, $$
so that
$$ sqrt{n+1}+sqrt{n-1} leq 2sqrt{n} quad iffquad sqrt{n+1}- sqrt n leq sqrt n - sqrt{n-1}. $$
$endgroup$
add a comment |
$begingroup$
Note that, for $ngeq 1$,
$$ (sqrt{n+1}+sqrt{n-1})^2 = n+1+2sqrt{n^2-1}+n-1 = 2n+2sqrt{n^2-1}leq 2n +2n=4n, $$
so that
$$ sqrt{n+1}+sqrt{n-1} leq 2sqrt{n} quad iffquad sqrt{n+1}- sqrt n leq sqrt n - sqrt{n-1}. $$
$endgroup$
add a comment |
$begingroup$
Note that, for $ngeq 1$,
$$ (sqrt{n+1}+sqrt{n-1})^2 = n+1+2sqrt{n^2-1}+n-1 = 2n+2sqrt{n^2-1}leq 2n +2n=4n, $$
so that
$$ sqrt{n+1}+sqrt{n-1} leq 2sqrt{n} quad iffquad sqrt{n+1}- sqrt n leq sqrt n - sqrt{n-1}. $$
$endgroup$
Note that, for $ngeq 1$,
$$ (sqrt{n+1}+sqrt{n-1})^2 = n+1+2sqrt{n^2-1}+n-1 = 2n+2sqrt{n^2-1}leq 2n +2n=4n, $$
so that
$$ sqrt{n+1}+sqrt{n-1} leq 2sqrt{n} quad iffquad sqrt{n+1}- sqrt n leq sqrt n - sqrt{n-1}. $$
answered Dec 1 '18 at 20:35
MisterRiemannMisterRiemann
5,8451624
5,8451624
add a comment |
add a comment |
$begingroup$
hint
use the conjugate
$$a_n=frac{1}{sqrt{n+1}+sqrt{n}}=frac{1}{b_n}$$
now prove tha $(b_n)$ is increasing and conclude that $(a_n)$ is decreasing.
$endgroup$
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
add a comment |
$begingroup$
hint
use the conjugate
$$a_n=frac{1}{sqrt{n+1}+sqrt{n}}=frac{1}{b_n}$$
now prove tha $(b_n)$ is increasing and conclude that $(a_n)$ is decreasing.
$endgroup$
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
add a comment |
$begingroup$
hint
use the conjugate
$$a_n=frac{1}{sqrt{n+1}+sqrt{n}}=frac{1}{b_n}$$
now prove tha $(b_n)$ is increasing and conclude that $(a_n)$ is decreasing.
$endgroup$
hint
use the conjugate
$$a_n=frac{1}{sqrt{n+1}+sqrt{n}}=frac{1}{b_n}$$
now prove tha $(b_n)$ is increasing and conclude that $(a_n)$ is decreasing.
edited Dec 1 '18 at 20:40
answered Dec 1 '18 at 20:29
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
add a comment |
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
$sqrt{n+2} + sqrt{n+1} ge? sqrt{n+1} + sqrt{n}$ => $sqrt{n+2} ge? sqrt{n}$ => increasing since $n+2 ge n$ but can you clarify how is that helping me?
$endgroup$
– Sargis Iskandaryan
Dec 1 '18 at 20:35
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
$begingroup$
@SargisIskandaryan if the denominator increases, the fraction decreases.
$endgroup$
– hamam_Abdallah
Dec 1 '18 at 20:37
add a comment |
$begingroup$
$$
\a_{n+1}le a_{n}<=>
\sqrt{n+1}+sqrt{n-1}le2sqrt{n}<=>
\(sqrt{n+1}+sqrt{n-1})^2le(2sqrt{n})^2<=>
\sqrt{(n-1)(n+1)}=sqrt{n^2-1}le sqrt{n^2}=n
$$
$endgroup$
add a comment |
$begingroup$
$$
\a_{n+1}le a_{n}<=>
\sqrt{n+1}+sqrt{n-1}le2sqrt{n}<=>
\(sqrt{n+1}+sqrt{n-1})^2le(2sqrt{n})^2<=>
\sqrt{(n-1)(n+1)}=sqrt{n^2-1}le sqrt{n^2}=n
$$
$endgroup$
add a comment |
$begingroup$
$$
\a_{n+1}le a_{n}<=>
\sqrt{n+1}+sqrt{n-1}le2sqrt{n}<=>
\(sqrt{n+1}+sqrt{n-1})^2le(2sqrt{n})^2<=>
\sqrt{(n-1)(n+1)}=sqrt{n^2-1}le sqrt{n^2}=n
$$
$endgroup$
$$
\a_{n+1}le a_{n}<=>
\sqrt{n+1}+sqrt{n-1}le2sqrt{n}<=>
\(sqrt{n+1}+sqrt{n-1})^2le(2sqrt{n})^2<=>
\sqrt{(n-1)(n+1)}=sqrt{n^2-1}le sqrt{n^2}=n
$$
answered Dec 1 '18 at 20:41
Samvel SafaryanSamvel Safaryan
497111
497111
add a comment |
add a comment |
$begingroup$
Square to $2n+2sqrt{n^2-1}le 4n$.
$endgroup$
add a comment |
$begingroup$
Square to $2n+2sqrt{n^2-1}le 4n$.
$endgroup$
add a comment |
$begingroup$
Square to $2n+2sqrt{n^2-1}le 4n$.
$endgroup$
Square to $2n+2sqrt{n^2-1}le 4n$.
answered Dec 1 '18 at 20:34
J.G.J.G.
24.1k22539
24.1k22539
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021788%2fprove-a-n-sqrtn1-sqrtn-is-monotone-n-ge-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If you calculate $a_0$ and $a_1$ (and possibly $a_2$ for good measure), you can easily see which way the sequence is not monotone.
$endgroup$
– Arthur
Dec 1 '18 at 20:29