AMC 1834 - If $a, b $ and $c$ are nonzero numbers such that (a+b-c)/c=(a-b+c)/b=(-a+b+c)/a and...












1












$begingroup$


I am getting stuck on this question:
If a, b, and c, are nonzero numbers such that $frac{a+b-c}{c}$=$frac{a-b+c}{b}$=$frac{-a+b+c}{a}$ and x=$frac{(a+b)(b+c)(c+a)}{abc}$ and x<0, then x=?



What I have done so far: Consider, if $frac{a}{b}$=$frac{c}{d}$, and (b+d) is non-zero, then $frac{a+c}{b+d}$=$frac{a}{b}$=$frac{c}{d}$. So with that fact, I did... $frac{a+b-c}{c}$=$frac{a-b+c}{b}$ $implies$
$frac{2a}{c+b}$ and $frac{2a}{c+b}$=$frac{-a+b+c}{a}$$implies$ $frac{(a+b+c)}{a+b+c}$ = 1. Then I took the original equations and did $frac{a+b-c}{c}$=1, so $a+b=2c$ , and similarly, $(a+c)=2b$ and $b+c=2a$. So plugging that into x=$frac{(a+b)(b+c)(c+a)}{abc}$ we have $x=frac{(2a)(2b)(2c)}{abc}$, which is $x=frac{8(abc)}{abc}=8$. This is wrong though, because it says in the problem x<0. So how do I do this?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I am getting stuck on this question:
    If a, b, and c, are nonzero numbers such that $frac{a+b-c}{c}$=$frac{a-b+c}{b}$=$frac{-a+b+c}{a}$ and x=$frac{(a+b)(b+c)(c+a)}{abc}$ and x<0, then x=?



    What I have done so far: Consider, if $frac{a}{b}$=$frac{c}{d}$, and (b+d) is non-zero, then $frac{a+c}{b+d}$=$frac{a}{b}$=$frac{c}{d}$. So with that fact, I did... $frac{a+b-c}{c}$=$frac{a-b+c}{b}$ $implies$
    $frac{2a}{c+b}$ and $frac{2a}{c+b}$=$frac{-a+b+c}{a}$$implies$ $frac{(a+b+c)}{a+b+c}$ = 1. Then I took the original equations and did $frac{a+b-c}{c}$=1, so $a+b=2c$ , and similarly, $(a+c)=2b$ and $b+c=2a$. So plugging that into x=$frac{(a+b)(b+c)(c+a)}{abc}$ we have $x=frac{(2a)(2b)(2c)}{abc}$, which is $x=frac{8(abc)}{abc}=8$. This is wrong though, because it says in the problem x<0. So how do I do this?










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      I am getting stuck on this question:
      If a, b, and c, are nonzero numbers such that $frac{a+b-c}{c}$=$frac{a-b+c}{b}$=$frac{-a+b+c}{a}$ and x=$frac{(a+b)(b+c)(c+a)}{abc}$ and x<0, then x=?



      What I have done so far: Consider, if $frac{a}{b}$=$frac{c}{d}$, and (b+d) is non-zero, then $frac{a+c}{b+d}$=$frac{a}{b}$=$frac{c}{d}$. So with that fact, I did... $frac{a+b-c}{c}$=$frac{a-b+c}{b}$ $implies$
      $frac{2a}{c+b}$ and $frac{2a}{c+b}$=$frac{-a+b+c}{a}$$implies$ $frac{(a+b+c)}{a+b+c}$ = 1. Then I took the original equations and did $frac{a+b-c}{c}$=1, so $a+b=2c$ , and similarly, $(a+c)=2b$ and $b+c=2a$. So plugging that into x=$frac{(a+b)(b+c)(c+a)}{abc}$ we have $x=frac{(2a)(2b)(2c)}{abc}$, which is $x=frac{8(abc)}{abc}=8$. This is wrong though, because it says in the problem x<0. So how do I do this?










      share|cite|improve this question











      $endgroup$




      I am getting stuck on this question:
      If a, b, and c, are nonzero numbers such that $frac{a+b-c}{c}$=$frac{a-b+c}{b}$=$frac{-a+b+c}{a}$ and x=$frac{(a+b)(b+c)(c+a)}{abc}$ and x<0, then x=?



      What I have done so far: Consider, if $frac{a}{b}$=$frac{c}{d}$, and (b+d) is non-zero, then $frac{a+c}{b+d}$=$frac{a}{b}$=$frac{c}{d}$. So with that fact, I did... $frac{a+b-c}{c}$=$frac{a-b+c}{b}$ $implies$
      $frac{2a}{c+b}$ and $frac{2a}{c+b}$=$frac{-a+b+c}{a}$$implies$ $frac{(a+b+c)}{a+b+c}$ = 1. Then I took the original equations and did $frac{a+b-c}{c}$=1, so $a+b=2c$ , and similarly, $(a+c)=2b$ and $b+c=2a$. So plugging that into x=$frac{(a+b)(b+c)(c+a)}{abc}$ we have $x=frac{(2a)(2b)(2c)}{abc}$, which is $x=frac{8(abc)}{abc}=8$. This is wrong though, because it says in the problem x<0. So how do I do this?







      algebra-precalculus fractions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 20 '18 at 17:49









      Ankit Kumar

      1,535221




      1,535221










      asked Dec 20 '18 at 17:26









      Kenneth DangKenneth Dang

      136




      136






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          $$frac{a+b-c}{c}=frac{a-b+c}{b}$$
          $$ab+b^2-bc=ac-bc+c^2implies a(b-c)=(b+c)(c-b)$$
          $$implies b=c quad ORquad a+b+c=0$$
          If we take $b=c$, $$frac{a}{c}=frac{-a+2c}{a}quad using (1)and (3).$$
          $$implies ({frac{a}{c}})^2=1quad ORquad -2$$
          Obviosuly $-2$ isn't possible, $a=c$ will give $x=1$ and $a=-c$ will give $x=0$.



          So, $a+b+c=0implies a=-(b+c), b=-(a+c), c=-(a+b)implies x=-1.$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
            $endgroup$
            – Kenneth Dang
            Dec 20 '18 at 18:44






          • 2




            $begingroup$
            $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
            $endgroup$
            – Ankit Kumar
            Dec 20 '18 at 18:49





















          1












          $begingroup$

          Hint: $$a=-frac{b}{2},b=b,c=-frac{b}{2}$$ solves your problem and $$x=-1$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            You correctly derived:
            $$frac{2a}{c+b}=frac{-a+b+c}{a}$$
            Your mistake is here:




            Then I took the original equations and did $frac{a+b-c}{c}=1$




            Instead, denote: $frac{b+c}{a}=t$, then the above equation becomes:
            $$frac2{t}=-1+t Rightarrow t^2-t-2=0 Rightarrow t_1=-1 text{and} t_2=2.$$



            Also note that:
            $$frac{a+b-c}{c}=frac{a-b+c}{b}=frac{-a+b+c}{a}iff \
            frac{a+b}{c}-1=frac{a+c}{b}-1=frac{b+c}{a}-1 iff \
            frac{a+b}{c}=frac{a+c}{b}=frac{b+c}{a}=t.$$

            Hence:
            $$x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=(-1)^3=-1;\
            x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=2^3not< 0.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
              $endgroup$
              – Kenneth Dang
              Dec 20 '18 at 20:59











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047782%2famc-1834-if-a-b-and-c-are-nonzero-numbers-such-that-ab-c-c-a-bc-b%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            $$frac{a+b-c}{c}=frac{a-b+c}{b}$$
            $$ab+b^2-bc=ac-bc+c^2implies a(b-c)=(b+c)(c-b)$$
            $$implies b=c quad ORquad a+b+c=0$$
            If we take $b=c$, $$frac{a}{c}=frac{-a+2c}{a}quad using (1)and (3).$$
            $$implies ({frac{a}{c}})^2=1quad ORquad -2$$
            Obviosuly $-2$ isn't possible, $a=c$ will give $x=1$ and $a=-c$ will give $x=0$.



            So, $a+b+c=0implies a=-(b+c), b=-(a+c), c=-(a+b)implies x=-1.$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
              $endgroup$
              – Kenneth Dang
              Dec 20 '18 at 18:44






            • 2




              $begingroup$
              $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
              $endgroup$
              – Ankit Kumar
              Dec 20 '18 at 18:49


















            1












            $begingroup$

            $$frac{a+b-c}{c}=frac{a-b+c}{b}$$
            $$ab+b^2-bc=ac-bc+c^2implies a(b-c)=(b+c)(c-b)$$
            $$implies b=c quad ORquad a+b+c=0$$
            If we take $b=c$, $$frac{a}{c}=frac{-a+2c}{a}quad using (1)and (3).$$
            $$implies ({frac{a}{c}})^2=1quad ORquad -2$$
            Obviosuly $-2$ isn't possible, $a=c$ will give $x=1$ and $a=-c$ will give $x=0$.



            So, $a+b+c=0implies a=-(b+c), b=-(a+c), c=-(a+b)implies x=-1.$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
              $endgroup$
              – Kenneth Dang
              Dec 20 '18 at 18:44






            • 2




              $begingroup$
              $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
              $endgroup$
              – Ankit Kumar
              Dec 20 '18 at 18:49
















            1












            1








            1





            $begingroup$

            $$frac{a+b-c}{c}=frac{a-b+c}{b}$$
            $$ab+b^2-bc=ac-bc+c^2implies a(b-c)=(b+c)(c-b)$$
            $$implies b=c quad ORquad a+b+c=0$$
            If we take $b=c$, $$frac{a}{c}=frac{-a+2c}{a}quad using (1)and (3).$$
            $$implies ({frac{a}{c}})^2=1quad ORquad -2$$
            Obviosuly $-2$ isn't possible, $a=c$ will give $x=1$ and $a=-c$ will give $x=0$.



            So, $a+b+c=0implies a=-(b+c), b=-(a+c), c=-(a+b)implies x=-1.$






            share|cite|improve this answer









            $endgroup$



            $$frac{a+b-c}{c}=frac{a-b+c}{b}$$
            $$ab+b^2-bc=ac-bc+c^2implies a(b-c)=(b+c)(c-b)$$
            $$implies b=c quad ORquad a+b+c=0$$
            If we take $b=c$, $$frac{a}{c}=frac{-a+2c}{a}quad using (1)and (3).$$
            $$implies ({frac{a}{c}})^2=1quad ORquad -2$$
            Obviosuly $-2$ isn't possible, $a=c$ will give $x=1$ and $a=-c$ will give $x=0$.



            So, $a+b+c=0implies a=-(b+c), b=-(a+c), c=-(a+b)implies x=-1.$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 20 '18 at 17:43









            Ankit KumarAnkit Kumar

            1,535221




            1,535221








            • 1




              $begingroup$
              Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
              $endgroup$
              – Kenneth Dang
              Dec 20 '18 at 18:44






            • 2




              $begingroup$
              $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
              $endgroup$
              – Ankit Kumar
              Dec 20 '18 at 18:49
















            • 1




              $begingroup$
              Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
              $endgroup$
              – Kenneth Dang
              Dec 20 '18 at 18:44






            • 2




              $begingroup$
              $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
              $endgroup$
              – Ankit Kumar
              Dec 20 '18 at 18:49










            1




            1




            $begingroup$
            Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
            $endgroup$
            – Kenneth Dang
            Dec 20 '18 at 18:44




            $begingroup$
            Dear Mr. Kumar, how do you know from a(b-c)=(b+c)(c-b) that b=c or a+b+c=0?
            $endgroup$
            – Kenneth Dang
            Dec 20 '18 at 18:44




            2




            2




            $begingroup$
            $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
            $endgroup$
            – Ankit Kumar
            Dec 20 '18 at 18:49






            $begingroup$
            $a(b-c)=(b+c)(c-b)$ is same as $a(b-c)+(b-c)(b+c)=0$ which is same as $(b-c)(a+b+c)=0$. Btw thank you, no one addressed me like that before ;)
            $endgroup$
            – Ankit Kumar
            Dec 20 '18 at 18:49













            1












            $begingroup$

            Hint: $$a=-frac{b}{2},b=b,c=-frac{b}{2}$$ solves your problem and $$x=-1$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Hint: $$a=-frac{b}{2},b=b,c=-frac{b}{2}$$ solves your problem and $$x=-1$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Hint: $$a=-frac{b}{2},b=b,c=-frac{b}{2}$$ solves your problem and $$x=-1$$






                share|cite|improve this answer









                $endgroup$



                Hint: $$a=-frac{b}{2},b=b,c=-frac{b}{2}$$ solves your problem and $$x=-1$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 20 '18 at 17:44









                Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                78k42866




                78k42866























                    0












                    $begingroup$

                    You correctly derived:
                    $$frac{2a}{c+b}=frac{-a+b+c}{a}$$
                    Your mistake is here:




                    Then I took the original equations and did $frac{a+b-c}{c}=1$




                    Instead, denote: $frac{b+c}{a}=t$, then the above equation becomes:
                    $$frac2{t}=-1+t Rightarrow t^2-t-2=0 Rightarrow t_1=-1 text{and} t_2=2.$$



                    Also note that:
                    $$frac{a+b-c}{c}=frac{a-b+c}{b}=frac{-a+b+c}{a}iff \
                    frac{a+b}{c}-1=frac{a+c}{b}-1=frac{b+c}{a}-1 iff \
                    frac{a+b}{c}=frac{a+c}{b}=frac{b+c}{a}=t.$$

                    Hence:
                    $$x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=(-1)^3=-1;\
                    x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=2^3not< 0.$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                      $endgroup$
                      – Kenneth Dang
                      Dec 20 '18 at 20:59
















                    0












                    $begingroup$

                    You correctly derived:
                    $$frac{2a}{c+b}=frac{-a+b+c}{a}$$
                    Your mistake is here:




                    Then I took the original equations and did $frac{a+b-c}{c}=1$




                    Instead, denote: $frac{b+c}{a}=t$, then the above equation becomes:
                    $$frac2{t}=-1+t Rightarrow t^2-t-2=0 Rightarrow t_1=-1 text{and} t_2=2.$$



                    Also note that:
                    $$frac{a+b-c}{c}=frac{a-b+c}{b}=frac{-a+b+c}{a}iff \
                    frac{a+b}{c}-1=frac{a+c}{b}-1=frac{b+c}{a}-1 iff \
                    frac{a+b}{c}=frac{a+c}{b}=frac{b+c}{a}=t.$$

                    Hence:
                    $$x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=(-1)^3=-1;\
                    x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=2^3not< 0.$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                      $endgroup$
                      – Kenneth Dang
                      Dec 20 '18 at 20:59














                    0












                    0








                    0





                    $begingroup$

                    You correctly derived:
                    $$frac{2a}{c+b}=frac{-a+b+c}{a}$$
                    Your mistake is here:




                    Then I took the original equations and did $frac{a+b-c}{c}=1$




                    Instead, denote: $frac{b+c}{a}=t$, then the above equation becomes:
                    $$frac2{t}=-1+t Rightarrow t^2-t-2=0 Rightarrow t_1=-1 text{and} t_2=2.$$



                    Also note that:
                    $$frac{a+b-c}{c}=frac{a-b+c}{b}=frac{-a+b+c}{a}iff \
                    frac{a+b}{c}-1=frac{a+c}{b}-1=frac{b+c}{a}-1 iff \
                    frac{a+b}{c}=frac{a+c}{b}=frac{b+c}{a}=t.$$

                    Hence:
                    $$x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=(-1)^3=-1;\
                    x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=2^3not< 0.$$






                    share|cite|improve this answer









                    $endgroup$



                    You correctly derived:
                    $$frac{2a}{c+b}=frac{-a+b+c}{a}$$
                    Your mistake is here:




                    Then I took the original equations and did $frac{a+b-c}{c}=1$




                    Instead, denote: $frac{b+c}{a}=t$, then the above equation becomes:
                    $$frac2{t}=-1+t Rightarrow t^2-t-2=0 Rightarrow t_1=-1 text{and} t_2=2.$$



                    Also note that:
                    $$frac{a+b-c}{c}=frac{a-b+c}{b}=frac{-a+b+c}{a}iff \
                    frac{a+b}{c}-1=frac{a+c}{b}-1=frac{b+c}{a}-1 iff \
                    frac{a+b}{c}=frac{a+c}{b}=frac{b+c}{a}=t.$$

                    Hence:
                    $$x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=(-1)^3=-1;\
                    x=frac{(a+b)(b+c)(c+a)}{abc}=t^3=2^3not< 0.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 20 '18 at 19:40









                    farruhotafarruhota

                    21.6k2842




                    21.6k2842












                    • $begingroup$
                      Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                      $endgroup$
                      – Kenneth Dang
                      Dec 20 '18 at 20:59


















                    • $begingroup$
                      Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                      $endgroup$
                      – Kenneth Dang
                      Dec 20 '18 at 20:59
















                    $begingroup$
                    Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                    $endgroup$
                    – Kenneth Dang
                    Dec 20 '18 at 20:59




                    $begingroup$
                    Wow, I never thought of it like that. Do you an assertion as to when I should think similarly to this when dealing with problem solving?
                    $endgroup$
                    – Kenneth Dang
                    Dec 20 '18 at 20:59


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047782%2famc-1834-if-a-b-and-c-are-nonzero-numbers-such-that-ab-c-c-a-bc-b%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten