$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$












-1












$begingroup$


Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
    $endgroup$
    – Lord Shark the Unknown
    Dec 15 '18 at 15:10






  • 1




    $begingroup$
    To calculate, use Cesàro--Stolz theorem.
    $endgroup$
    – xbh
    Dec 15 '18 at 15:30
















-1












$begingroup$


Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
    $endgroup$
    – Lord Shark the Unknown
    Dec 15 '18 at 15:10






  • 1




    $begingroup$
    To calculate, use Cesàro--Stolz theorem.
    $endgroup$
    – xbh
    Dec 15 '18 at 15:30














-1












-1








-1





$begingroup$


Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!










share|cite|improve this question









$endgroup$




Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!







limits sums-of-squares gauss-sums






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 15 '18 at 15:07









newbienewbie

313212




313212








  • 4




    $begingroup$
    For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
    $endgroup$
    – Lord Shark the Unknown
    Dec 15 '18 at 15:10






  • 1




    $begingroup$
    To calculate, use Cesàro--Stolz theorem.
    $endgroup$
    – xbh
    Dec 15 '18 at 15:30














  • 4




    $begingroup$
    For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
    $endgroup$
    – Lord Shark the Unknown
    Dec 15 '18 at 15:10






  • 1




    $begingroup$
    To calculate, use Cesàro--Stolz theorem.
    $endgroup$
    – xbh
    Dec 15 '18 at 15:30








4




4




$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10




$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10




1




1




$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30




$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30










1 Answer
1






active

oldest

votes


















1












$begingroup$

The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than



$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$



This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041582%2flim-n-to-infty-frac-sum-i-1ni4-lambda-big-sum-i-1ni2-lambda%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than



    $$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$



    This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than



      $$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$



      This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than



        $$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$



        This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$






        share|cite|improve this answer









        $endgroup$



        The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than



        $$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$



        This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 15 '18 at 17:56









        zhw.zhw.

        73.8k43175




        73.8k43175






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041582%2flim-n-to-infty-frac-sum-i-1ni4-lambda-big-sum-i-1ni2-lambda%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten