how to show that $E(A,B_1oplus B_2)cong E(A,B_1)times E(A,B_2)$
$begingroup$
Show that $E(A,B_1oplus B_2)cong E(A,B_1)times E(A,B_2)$.$E(A,B)$ here means the set of equivalence classes of extensions of A by B.It's a exercise from GTM 4 ,Chapter 3,but I don't know how to prove it.
commutative-algebra
$endgroup$
add a comment |
$begingroup$
Show that $E(A,B_1oplus B_2)cong E(A,B_1)times E(A,B_2)$.$E(A,B)$ here means the set of equivalence classes of extensions of A by B.It's a exercise from GTM 4 ,Chapter 3,but I don't know how to prove it.
commutative-algebra
$endgroup$
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50
add a comment |
$begingroup$
Show that $E(A,B_1oplus B_2)cong E(A,B_1)times E(A,B_2)$.$E(A,B)$ here means the set of equivalence classes of extensions of A by B.It's a exercise from GTM 4 ,Chapter 3,but I don't know how to prove it.
commutative-algebra
$endgroup$
Show that $E(A,B_1oplus B_2)cong E(A,B_1)times E(A,B_2)$.$E(A,B)$ here means the set of equivalence classes of extensions of A by B.It's a exercise from GTM 4 ,Chapter 3,but I don't know how to prove it.
commutative-algebra
commutative-algebra
asked Dec 24 '18 at 14:44
Daniel XuDaniel Xu
877
877
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50
add a comment |
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051311%2fhow-to-show-that-ea-b-1-oplus-b-2-cong-ea-b-1-times-ea-b-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051311%2fhow-to-show-that-ea-b-1-oplus-b-2-cong-ea-b-1-times-ea-b-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What are $A,B_1,B_2$?
$endgroup$
– Rafay Ashary
Dec 24 '18 at 14:48
$begingroup$
modules over a ring
$endgroup$
– Daniel Xu
Dec 24 '18 at 14:50