Finding idempotents in group algebra over $A_n$











up vote
1
down vote

favorite












Let $G=A_4$ be the alternating group on 4 letters, and let $R = mathbb{C}[G]$. Then



$$mathbb{C}[G] = Uoplus U' oplus U'' oplus V^{oplus 3},$$



where $U,U',U''$ are the three 1-dimensional irreducible representations and $V$ the one arising from the standard representation of $S_4$.



We want to:




  • find idempotents $epsilon$ for each of $U,U',U''$ that realize these representations as left ideals of $mathbb{C}[G]$.

  • find a subrepresentation $Wsubset R$ which is isomorphic to $V$, and express $W = mathbb{C}[G]epsilonsubset R,$ where $epsilon$ is an idempotent.


I know how to use Young diagrams to find idempotents for each irreducible representation of $S_4$. But how can we use the Young diagrams to find these things for $A_4$?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Let $G=A_4$ be the alternating group on 4 letters, and let $R = mathbb{C}[G]$. Then



    $$mathbb{C}[G] = Uoplus U' oplus U'' oplus V^{oplus 3},$$



    where $U,U',U''$ are the three 1-dimensional irreducible representations and $V$ the one arising from the standard representation of $S_4$.



    We want to:




    • find idempotents $epsilon$ for each of $U,U',U''$ that realize these representations as left ideals of $mathbb{C}[G]$.

    • find a subrepresentation $Wsubset R$ which is isomorphic to $V$, and express $W = mathbb{C}[G]epsilonsubset R,$ where $epsilon$ is an idempotent.


    I know how to use Young diagrams to find idempotents for each irreducible representation of $S_4$. But how can we use the Young diagrams to find these things for $A_4$?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $G=A_4$ be the alternating group on 4 letters, and let $R = mathbb{C}[G]$. Then



      $$mathbb{C}[G] = Uoplus U' oplus U'' oplus V^{oplus 3},$$



      where $U,U',U''$ are the three 1-dimensional irreducible representations and $V$ the one arising from the standard representation of $S_4$.



      We want to:




      • find idempotents $epsilon$ for each of $U,U',U''$ that realize these representations as left ideals of $mathbb{C}[G]$.

      • find a subrepresentation $Wsubset R$ which is isomorphic to $V$, and express $W = mathbb{C}[G]epsilonsubset R,$ where $epsilon$ is an idempotent.


      I know how to use Young diagrams to find idempotents for each irreducible representation of $S_4$. But how can we use the Young diagrams to find these things for $A_4$?










      share|cite|improve this question















      Let $G=A_4$ be the alternating group on 4 letters, and let $R = mathbb{C}[G]$. Then



      $$mathbb{C}[G] = Uoplus U' oplus U'' oplus V^{oplus 3},$$



      where $U,U',U''$ are the three 1-dimensional irreducible representations and $V$ the one arising from the standard representation of $S_4$.



      We want to:




      • find idempotents $epsilon$ for each of $U,U',U''$ that realize these representations as left ideals of $mathbb{C}[G]$.

      • find a subrepresentation $Wsubset R$ which is isomorphic to $V$, and express $W = mathbb{C}[G]epsilonsubset R,$ where $epsilon$ is an idempotent.


      I know how to use Young diagrams to find idempotents for each irreducible representation of $S_4$. But how can we use the Young diagrams to find these things for $A_4$?







      group-theory ring-theory representation-theory ideals group-rings






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      Batominovski

      30.9k23187




      30.9k23187










      asked yesterday









      user346096

      38317




      38317






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote













          For the first part, note that $A_4$ has a unique nontrivial proper normal subgroup $$K_4:=big{(),(1;2)(3;4),(1;3)(2;4),(1;4)(2;3)big},.$$ There is a group isomorphism $varphi:(A_4/K_4)to C_3$, where $C_k$ is the cyclic group of order $k$. A representation $rho:C_3to text{GL}(X)$ of $C_3$ can be made into a representation $tilde{rho}: A_4to text{GL}(X)$ of $A_4$ by setting
          $$tilde{rho}:=rhocircvarphicirckappa,,$$
          where $kappa:A_4to (A_4/K_4)$ is the canonical projection. Note that $C_3$ has three nonisomorphic irreducible representations, all of which are $1$-dimensional. The irreducible representations of $C_3=langle grangle$ are $chi_j:C_3totext{GL}(C)$ sending $gmapsto expleft(frac{2pitext{i}j}{3}right)$ for $j=0,1,2$. We may identify $C_3$ with the subgroup $biglangle (1;2;3)bigrangle$ of $A_4$, and set $g:=(1;2;3)$.



          We now know what to look for. The three nonisomorphic $1$-dimensional representations of $A_4$ must be given by $tilde{chi}_j$ for $j=0,1,2$. First, the left ideal $U$ which is given by the representation $tilde{chi}_0$ of $R$ is clearly generated by $sumlimits_{sigmain A_4},sigma$. We must rescale this element to get an idempotent $epsilon_Uin R$, which is
          $$epsilon_U:=frac{1}{|A_4|},sumlimits_{sigmain A_4},sigma=frac{1}{12},sumlimits_{sigmain A_4},sigma,.$$



          Let $U'$ and $U''$ be the $1$-dimensional left ideal of $R$ corresponding to the representations $tilde{chi}_1$ and $tilde{chi}_2$, respectively, with the corresponding idempotent elements $epsilon_{U'}$ and $epsilon_{U''}$. Now, note that $K_4$ must act trivially on $U'$ and $U''$. Ergo, we have
          $$epsilon_{U'}=a_1,s+b_1,(1;2;3),s+c_1,(1;3;2),s$$
          and
          $$epsilon_{U''}=a_2,s+b_2,(1;2;3),s+c_2,(1;3;2),s$$
          for some $a_1,a_2,b_1,b_2,c_1,c_2inmathbb{C}$. Here,
          $$s:=sum_{sigmain K_4},sigma,.$$
          We clearly have $a_j=expleft(frac{2pitext{i}j}{3}right),b_j$ and $b_j=expleft(frac{2pitext{i}j}{3}right),c_j$ since $g=(1;2;3)$ acts on $U'$ and $U''$ via multiplications by $expleft(frac{2pitext{i}}{3}right)$ and $expleft(frac{4pitext{i}}{3}right)$, respectively. That is,
          $$epsilon_{U'}=c_1,Biggl(expleft(frac{4pitext{i}}{3}right),s+expleft(frac{2pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr)$$
          and
          $$epsilon_{U''}=c_2,Biggl(expleft(frac{2pitext{i}}{3}right),s+expleft(frac{4pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr),.$$
          Because $epsilon_{U'}$ and $epsilon_{U''}$ are idempotent, $$c_j=frac{1}{|K_4|,Biggl(3,expleft(frac{3pitext{i}j}{3}right)Biggr)}=frac{expleft(frac{2pitext{i}j}{3}right)}{12}text{ for }jin{1,2},.$$
          Ergo,
          $$epsilon_{U'}=frac{1}{12},Biggl(1+expleft(frac{4pitext{i}}{3}right),(1;2;3)+expleft(frac{2pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma$$
          and
          $$epsilon_{U''}=frac{1}{12},Biggl(1+expleft(frac{2pitext{i}}{3}right),(1;2;3)+expleft(frac{4pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma,.$$
          (Observe that $U$, $U'$, and $U''$ are in fact two-sided ideals of $R$ isomorphic to $mathbb{C}$.)





          For the second part, we can take $W$ to be generated by $$p:=1+(1;2)(3;4)-(1;3)(2;4)-(1;4)(2;3)=big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big),.$$
          Let $q:=(1;2;3),p$ and $r:=(1;3;2),p$. Note that $K_4$ acts on $p$ by scalar multiple (the scalars involved are $pm1$). Since $A_4=C_3K_4$ and $K_4$ is normal in $A_4$, $W$ is indeed spanned by $p$, $q$, and $r$, whence it is a $3$-dimensional left ideal of $R$. As $p^2=4p$, we may take the idempotent $epsilon_W$ to be $$epsilon_W:=frac{1}{4}p=frac{1}{4},big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big)$$ so that $W=Repsilon_W$.



          We can also define $W'$ and $W''$ to be the left ideals generated by $p'$ and $p''$, respectively, where
          $$p':=1+(1;3)(2;4)-(1;2)(3;4)-(1;4)(2;3)=big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
          and
          $$p'':=1+(1;4)(2;3)-(1;2)(3;4)-(1;3)(2;4)=big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),.$$
          Then, $W'$ is spanned by $p'$, $q':=(1;2;3),p'$, and $r':=(1;3;2),p'$, whereas $W''$ is spanned by $p''$, $q'':=(1;2;3),p''$, and $r'':=(1;3;2),p''$. The left ideals $W'$ and $W''$ are generated by the idempotents
          $$epsilon_{W'}:=frac{1}{4},p'=frac{1}{4},big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
          and $$epsilon_{W''}:=frac{1}{4},p''=frac{1}{4},big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),,$$
          respectively. We can also see that $W$, $W'$, and $W''$ are isomorphic irreducible $3$-dimensional representations of $A_4$. While each of $W$, $W'$, and $W''$ is a left ideal of $R$, the sum $Woplus W'oplus W''$ is a simple two-sided ideal of $R$ isomorphic to $text{Mat}_{3times 3}(mathbb{C})$.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000166%2ffinding-idempotents-in-group-algebra-over-a-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote













            For the first part, note that $A_4$ has a unique nontrivial proper normal subgroup $$K_4:=big{(),(1;2)(3;4),(1;3)(2;4),(1;4)(2;3)big},.$$ There is a group isomorphism $varphi:(A_4/K_4)to C_3$, where $C_k$ is the cyclic group of order $k$. A representation $rho:C_3to text{GL}(X)$ of $C_3$ can be made into a representation $tilde{rho}: A_4to text{GL}(X)$ of $A_4$ by setting
            $$tilde{rho}:=rhocircvarphicirckappa,,$$
            where $kappa:A_4to (A_4/K_4)$ is the canonical projection. Note that $C_3$ has three nonisomorphic irreducible representations, all of which are $1$-dimensional. The irreducible representations of $C_3=langle grangle$ are $chi_j:C_3totext{GL}(C)$ sending $gmapsto expleft(frac{2pitext{i}j}{3}right)$ for $j=0,1,2$. We may identify $C_3$ with the subgroup $biglangle (1;2;3)bigrangle$ of $A_4$, and set $g:=(1;2;3)$.



            We now know what to look for. The three nonisomorphic $1$-dimensional representations of $A_4$ must be given by $tilde{chi}_j$ for $j=0,1,2$. First, the left ideal $U$ which is given by the representation $tilde{chi}_0$ of $R$ is clearly generated by $sumlimits_{sigmain A_4},sigma$. We must rescale this element to get an idempotent $epsilon_Uin R$, which is
            $$epsilon_U:=frac{1}{|A_4|},sumlimits_{sigmain A_4},sigma=frac{1}{12},sumlimits_{sigmain A_4},sigma,.$$



            Let $U'$ and $U''$ be the $1$-dimensional left ideal of $R$ corresponding to the representations $tilde{chi}_1$ and $tilde{chi}_2$, respectively, with the corresponding idempotent elements $epsilon_{U'}$ and $epsilon_{U''}$. Now, note that $K_4$ must act trivially on $U'$ and $U''$. Ergo, we have
            $$epsilon_{U'}=a_1,s+b_1,(1;2;3),s+c_1,(1;3;2),s$$
            and
            $$epsilon_{U''}=a_2,s+b_2,(1;2;3),s+c_2,(1;3;2),s$$
            for some $a_1,a_2,b_1,b_2,c_1,c_2inmathbb{C}$. Here,
            $$s:=sum_{sigmain K_4},sigma,.$$
            We clearly have $a_j=expleft(frac{2pitext{i}j}{3}right),b_j$ and $b_j=expleft(frac{2pitext{i}j}{3}right),c_j$ since $g=(1;2;3)$ acts on $U'$ and $U''$ via multiplications by $expleft(frac{2pitext{i}}{3}right)$ and $expleft(frac{4pitext{i}}{3}right)$, respectively. That is,
            $$epsilon_{U'}=c_1,Biggl(expleft(frac{4pitext{i}}{3}right),s+expleft(frac{2pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr)$$
            and
            $$epsilon_{U''}=c_2,Biggl(expleft(frac{2pitext{i}}{3}right),s+expleft(frac{4pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr),.$$
            Because $epsilon_{U'}$ and $epsilon_{U''}$ are idempotent, $$c_j=frac{1}{|K_4|,Biggl(3,expleft(frac{3pitext{i}j}{3}right)Biggr)}=frac{expleft(frac{2pitext{i}j}{3}right)}{12}text{ for }jin{1,2},.$$
            Ergo,
            $$epsilon_{U'}=frac{1}{12},Biggl(1+expleft(frac{4pitext{i}}{3}right),(1;2;3)+expleft(frac{2pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma$$
            and
            $$epsilon_{U''}=frac{1}{12},Biggl(1+expleft(frac{2pitext{i}}{3}right),(1;2;3)+expleft(frac{4pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma,.$$
            (Observe that $U$, $U'$, and $U''$ are in fact two-sided ideals of $R$ isomorphic to $mathbb{C}$.)





            For the second part, we can take $W$ to be generated by $$p:=1+(1;2)(3;4)-(1;3)(2;4)-(1;4)(2;3)=big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big),.$$
            Let $q:=(1;2;3),p$ and $r:=(1;3;2),p$. Note that $K_4$ acts on $p$ by scalar multiple (the scalars involved are $pm1$). Since $A_4=C_3K_4$ and $K_4$ is normal in $A_4$, $W$ is indeed spanned by $p$, $q$, and $r$, whence it is a $3$-dimensional left ideal of $R$. As $p^2=4p$, we may take the idempotent $epsilon_W$ to be $$epsilon_W:=frac{1}{4}p=frac{1}{4},big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big)$$ so that $W=Repsilon_W$.



            We can also define $W'$ and $W''$ to be the left ideals generated by $p'$ and $p''$, respectively, where
            $$p':=1+(1;3)(2;4)-(1;2)(3;4)-(1;4)(2;3)=big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
            and
            $$p'':=1+(1;4)(2;3)-(1;2)(3;4)-(1;3)(2;4)=big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),.$$
            Then, $W'$ is spanned by $p'$, $q':=(1;2;3),p'$, and $r':=(1;3;2),p'$, whereas $W''$ is spanned by $p''$, $q'':=(1;2;3),p''$, and $r'':=(1;3;2),p''$. The left ideals $W'$ and $W''$ are generated by the idempotents
            $$epsilon_{W'}:=frac{1}{4},p'=frac{1}{4},big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
            and $$epsilon_{W''}:=frac{1}{4},p''=frac{1}{4},big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),,$$
            respectively. We can also see that $W$, $W'$, and $W''$ are isomorphic irreducible $3$-dimensional representations of $A_4$. While each of $W$, $W'$, and $W''$ is a left ideal of $R$, the sum $Woplus W'oplus W''$ is a simple two-sided ideal of $R$ isomorphic to $text{Mat}_{3times 3}(mathbb{C})$.






            share|cite|improve this answer



























              up vote
              2
              down vote













              For the first part, note that $A_4$ has a unique nontrivial proper normal subgroup $$K_4:=big{(),(1;2)(3;4),(1;3)(2;4),(1;4)(2;3)big},.$$ There is a group isomorphism $varphi:(A_4/K_4)to C_3$, where $C_k$ is the cyclic group of order $k$. A representation $rho:C_3to text{GL}(X)$ of $C_3$ can be made into a representation $tilde{rho}: A_4to text{GL}(X)$ of $A_4$ by setting
              $$tilde{rho}:=rhocircvarphicirckappa,,$$
              where $kappa:A_4to (A_4/K_4)$ is the canonical projection. Note that $C_3$ has three nonisomorphic irreducible representations, all of which are $1$-dimensional. The irreducible representations of $C_3=langle grangle$ are $chi_j:C_3totext{GL}(C)$ sending $gmapsto expleft(frac{2pitext{i}j}{3}right)$ for $j=0,1,2$. We may identify $C_3$ with the subgroup $biglangle (1;2;3)bigrangle$ of $A_4$, and set $g:=(1;2;3)$.



              We now know what to look for. The three nonisomorphic $1$-dimensional representations of $A_4$ must be given by $tilde{chi}_j$ for $j=0,1,2$. First, the left ideal $U$ which is given by the representation $tilde{chi}_0$ of $R$ is clearly generated by $sumlimits_{sigmain A_4},sigma$. We must rescale this element to get an idempotent $epsilon_Uin R$, which is
              $$epsilon_U:=frac{1}{|A_4|},sumlimits_{sigmain A_4},sigma=frac{1}{12},sumlimits_{sigmain A_4},sigma,.$$



              Let $U'$ and $U''$ be the $1$-dimensional left ideal of $R$ corresponding to the representations $tilde{chi}_1$ and $tilde{chi}_2$, respectively, with the corresponding idempotent elements $epsilon_{U'}$ and $epsilon_{U''}$. Now, note that $K_4$ must act trivially on $U'$ and $U''$. Ergo, we have
              $$epsilon_{U'}=a_1,s+b_1,(1;2;3),s+c_1,(1;3;2),s$$
              and
              $$epsilon_{U''}=a_2,s+b_2,(1;2;3),s+c_2,(1;3;2),s$$
              for some $a_1,a_2,b_1,b_2,c_1,c_2inmathbb{C}$. Here,
              $$s:=sum_{sigmain K_4},sigma,.$$
              We clearly have $a_j=expleft(frac{2pitext{i}j}{3}right),b_j$ and $b_j=expleft(frac{2pitext{i}j}{3}right),c_j$ since $g=(1;2;3)$ acts on $U'$ and $U''$ via multiplications by $expleft(frac{2pitext{i}}{3}right)$ and $expleft(frac{4pitext{i}}{3}right)$, respectively. That is,
              $$epsilon_{U'}=c_1,Biggl(expleft(frac{4pitext{i}}{3}right),s+expleft(frac{2pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr)$$
              and
              $$epsilon_{U''}=c_2,Biggl(expleft(frac{2pitext{i}}{3}right),s+expleft(frac{4pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr),.$$
              Because $epsilon_{U'}$ and $epsilon_{U''}$ are idempotent, $$c_j=frac{1}{|K_4|,Biggl(3,expleft(frac{3pitext{i}j}{3}right)Biggr)}=frac{expleft(frac{2pitext{i}j}{3}right)}{12}text{ for }jin{1,2},.$$
              Ergo,
              $$epsilon_{U'}=frac{1}{12},Biggl(1+expleft(frac{4pitext{i}}{3}right),(1;2;3)+expleft(frac{2pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma$$
              and
              $$epsilon_{U''}=frac{1}{12},Biggl(1+expleft(frac{2pitext{i}}{3}right),(1;2;3)+expleft(frac{4pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma,.$$
              (Observe that $U$, $U'$, and $U''$ are in fact two-sided ideals of $R$ isomorphic to $mathbb{C}$.)





              For the second part, we can take $W$ to be generated by $$p:=1+(1;2)(3;4)-(1;3)(2;4)-(1;4)(2;3)=big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big),.$$
              Let $q:=(1;2;3),p$ and $r:=(1;3;2),p$. Note that $K_4$ acts on $p$ by scalar multiple (the scalars involved are $pm1$). Since $A_4=C_3K_4$ and $K_4$ is normal in $A_4$, $W$ is indeed spanned by $p$, $q$, and $r$, whence it is a $3$-dimensional left ideal of $R$. As $p^2=4p$, we may take the idempotent $epsilon_W$ to be $$epsilon_W:=frac{1}{4}p=frac{1}{4},big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big)$$ so that $W=Repsilon_W$.



              We can also define $W'$ and $W''$ to be the left ideals generated by $p'$ and $p''$, respectively, where
              $$p':=1+(1;3)(2;4)-(1;2)(3;4)-(1;4)(2;3)=big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
              and
              $$p'':=1+(1;4)(2;3)-(1;2)(3;4)-(1;3)(2;4)=big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),.$$
              Then, $W'$ is spanned by $p'$, $q':=(1;2;3),p'$, and $r':=(1;3;2),p'$, whereas $W''$ is spanned by $p''$, $q'':=(1;2;3),p''$, and $r'':=(1;3;2),p''$. The left ideals $W'$ and $W''$ are generated by the idempotents
              $$epsilon_{W'}:=frac{1}{4},p'=frac{1}{4},big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
              and $$epsilon_{W''}:=frac{1}{4},p''=frac{1}{4},big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),,$$
              respectively. We can also see that $W$, $W'$, and $W''$ are isomorphic irreducible $3$-dimensional representations of $A_4$. While each of $W$, $W'$, and $W''$ is a left ideal of $R$, the sum $Woplus W'oplus W''$ is a simple two-sided ideal of $R$ isomorphic to $text{Mat}_{3times 3}(mathbb{C})$.






              share|cite|improve this answer

























                up vote
                2
                down vote










                up vote
                2
                down vote









                For the first part, note that $A_4$ has a unique nontrivial proper normal subgroup $$K_4:=big{(),(1;2)(3;4),(1;3)(2;4),(1;4)(2;3)big},.$$ There is a group isomorphism $varphi:(A_4/K_4)to C_3$, where $C_k$ is the cyclic group of order $k$. A representation $rho:C_3to text{GL}(X)$ of $C_3$ can be made into a representation $tilde{rho}: A_4to text{GL}(X)$ of $A_4$ by setting
                $$tilde{rho}:=rhocircvarphicirckappa,,$$
                where $kappa:A_4to (A_4/K_4)$ is the canonical projection. Note that $C_3$ has three nonisomorphic irreducible representations, all of which are $1$-dimensional. The irreducible representations of $C_3=langle grangle$ are $chi_j:C_3totext{GL}(C)$ sending $gmapsto expleft(frac{2pitext{i}j}{3}right)$ for $j=0,1,2$. We may identify $C_3$ with the subgroup $biglangle (1;2;3)bigrangle$ of $A_4$, and set $g:=(1;2;3)$.



                We now know what to look for. The three nonisomorphic $1$-dimensional representations of $A_4$ must be given by $tilde{chi}_j$ for $j=0,1,2$. First, the left ideal $U$ which is given by the representation $tilde{chi}_0$ of $R$ is clearly generated by $sumlimits_{sigmain A_4},sigma$. We must rescale this element to get an idempotent $epsilon_Uin R$, which is
                $$epsilon_U:=frac{1}{|A_4|},sumlimits_{sigmain A_4},sigma=frac{1}{12},sumlimits_{sigmain A_4},sigma,.$$



                Let $U'$ and $U''$ be the $1$-dimensional left ideal of $R$ corresponding to the representations $tilde{chi}_1$ and $tilde{chi}_2$, respectively, with the corresponding idempotent elements $epsilon_{U'}$ and $epsilon_{U''}$. Now, note that $K_4$ must act trivially on $U'$ and $U''$. Ergo, we have
                $$epsilon_{U'}=a_1,s+b_1,(1;2;3),s+c_1,(1;3;2),s$$
                and
                $$epsilon_{U''}=a_2,s+b_2,(1;2;3),s+c_2,(1;3;2),s$$
                for some $a_1,a_2,b_1,b_2,c_1,c_2inmathbb{C}$. Here,
                $$s:=sum_{sigmain K_4},sigma,.$$
                We clearly have $a_j=expleft(frac{2pitext{i}j}{3}right),b_j$ and $b_j=expleft(frac{2pitext{i}j}{3}right),c_j$ since $g=(1;2;3)$ acts on $U'$ and $U''$ via multiplications by $expleft(frac{2pitext{i}}{3}right)$ and $expleft(frac{4pitext{i}}{3}right)$, respectively. That is,
                $$epsilon_{U'}=c_1,Biggl(expleft(frac{4pitext{i}}{3}right),s+expleft(frac{2pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr)$$
                and
                $$epsilon_{U''}=c_2,Biggl(expleft(frac{2pitext{i}}{3}right),s+expleft(frac{4pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr),.$$
                Because $epsilon_{U'}$ and $epsilon_{U''}$ are idempotent, $$c_j=frac{1}{|K_4|,Biggl(3,expleft(frac{3pitext{i}j}{3}right)Biggr)}=frac{expleft(frac{2pitext{i}j}{3}right)}{12}text{ for }jin{1,2},.$$
                Ergo,
                $$epsilon_{U'}=frac{1}{12},Biggl(1+expleft(frac{4pitext{i}}{3}right),(1;2;3)+expleft(frac{2pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma$$
                and
                $$epsilon_{U''}=frac{1}{12},Biggl(1+expleft(frac{2pitext{i}}{3}right),(1;2;3)+expleft(frac{4pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma,.$$
                (Observe that $U$, $U'$, and $U''$ are in fact two-sided ideals of $R$ isomorphic to $mathbb{C}$.)





                For the second part, we can take $W$ to be generated by $$p:=1+(1;2)(3;4)-(1;3)(2;4)-(1;4)(2;3)=big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big),.$$
                Let $q:=(1;2;3),p$ and $r:=(1;3;2),p$. Note that $K_4$ acts on $p$ by scalar multiple (the scalars involved are $pm1$). Since $A_4=C_3K_4$ and $K_4$ is normal in $A_4$, $W$ is indeed spanned by $p$, $q$, and $r$, whence it is a $3$-dimensional left ideal of $R$. As $p^2=4p$, we may take the idempotent $epsilon_W$ to be $$epsilon_W:=frac{1}{4}p=frac{1}{4},big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big)$$ so that $W=Repsilon_W$.



                We can also define $W'$ and $W''$ to be the left ideals generated by $p'$ and $p''$, respectively, where
                $$p':=1+(1;3)(2;4)-(1;2)(3;4)-(1;4)(2;3)=big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
                and
                $$p'':=1+(1;4)(2;3)-(1;2)(3;4)-(1;3)(2;4)=big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),.$$
                Then, $W'$ is spanned by $p'$, $q':=(1;2;3),p'$, and $r':=(1;3;2),p'$, whereas $W''$ is spanned by $p''$, $q'':=(1;2;3),p''$, and $r'':=(1;3;2),p''$. The left ideals $W'$ and $W''$ are generated by the idempotents
                $$epsilon_{W'}:=frac{1}{4},p'=frac{1}{4},big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
                and $$epsilon_{W''}:=frac{1}{4},p''=frac{1}{4},big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),,$$
                respectively. We can also see that $W$, $W'$, and $W''$ are isomorphic irreducible $3$-dimensional representations of $A_4$. While each of $W$, $W'$, and $W''$ is a left ideal of $R$, the sum $Woplus W'oplus W''$ is a simple two-sided ideal of $R$ isomorphic to $text{Mat}_{3times 3}(mathbb{C})$.






                share|cite|improve this answer














                For the first part, note that $A_4$ has a unique nontrivial proper normal subgroup $$K_4:=big{(),(1;2)(3;4),(1;3)(2;4),(1;4)(2;3)big},.$$ There is a group isomorphism $varphi:(A_4/K_4)to C_3$, where $C_k$ is the cyclic group of order $k$. A representation $rho:C_3to text{GL}(X)$ of $C_3$ can be made into a representation $tilde{rho}: A_4to text{GL}(X)$ of $A_4$ by setting
                $$tilde{rho}:=rhocircvarphicirckappa,,$$
                where $kappa:A_4to (A_4/K_4)$ is the canonical projection. Note that $C_3$ has three nonisomorphic irreducible representations, all of which are $1$-dimensional. The irreducible representations of $C_3=langle grangle$ are $chi_j:C_3totext{GL}(C)$ sending $gmapsto expleft(frac{2pitext{i}j}{3}right)$ for $j=0,1,2$. We may identify $C_3$ with the subgroup $biglangle (1;2;3)bigrangle$ of $A_4$, and set $g:=(1;2;3)$.



                We now know what to look for. The three nonisomorphic $1$-dimensional representations of $A_4$ must be given by $tilde{chi}_j$ for $j=0,1,2$. First, the left ideal $U$ which is given by the representation $tilde{chi}_0$ of $R$ is clearly generated by $sumlimits_{sigmain A_4},sigma$. We must rescale this element to get an idempotent $epsilon_Uin R$, which is
                $$epsilon_U:=frac{1}{|A_4|},sumlimits_{sigmain A_4},sigma=frac{1}{12},sumlimits_{sigmain A_4},sigma,.$$



                Let $U'$ and $U''$ be the $1$-dimensional left ideal of $R$ corresponding to the representations $tilde{chi}_1$ and $tilde{chi}_2$, respectively, with the corresponding idempotent elements $epsilon_{U'}$ and $epsilon_{U''}$. Now, note that $K_4$ must act trivially on $U'$ and $U''$. Ergo, we have
                $$epsilon_{U'}=a_1,s+b_1,(1;2;3),s+c_1,(1;3;2),s$$
                and
                $$epsilon_{U''}=a_2,s+b_2,(1;2;3),s+c_2,(1;3;2),s$$
                for some $a_1,a_2,b_1,b_2,c_1,c_2inmathbb{C}$. Here,
                $$s:=sum_{sigmain K_4},sigma,.$$
                We clearly have $a_j=expleft(frac{2pitext{i}j}{3}right),b_j$ and $b_j=expleft(frac{2pitext{i}j}{3}right),c_j$ since $g=(1;2;3)$ acts on $U'$ and $U''$ via multiplications by $expleft(frac{2pitext{i}}{3}right)$ and $expleft(frac{4pitext{i}}{3}right)$, respectively. That is,
                $$epsilon_{U'}=c_1,Biggl(expleft(frac{4pitext{i}}{3}right),s+expleft(frac{2pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr)$$
                and
                $$epsilon_{U''}=c_2,Biggl(expleft(frac{2pitext{i}}{3}right),s+expleft(frac{4pitext{i}}{3}right),(1;2;3),s+(1;3;2),sBiggr),.$$
                Because $epsilon_{U'}$ and $epsilon_{U''}$ are idempotent, $$c_j=frac{1}{|K_4|,Biggl(3,expleft(frac{3pitext{i}j}{3}right)Biggr)}=frac{expleft(frac{2pitext{i}j}{3}right)}{12}text{ for }jin{1,2},.$$
                Ergo,
                $$epsilon_{U'}=frac{1}{12},Biggl(1+expleft(frac{4pitext{i}}{3}right),(1;2;3)+expleft(frac{2pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma$$
                and
                $$epsilon_{U''}=frac{1}{12},Biggl(1+expleft(frac{2pitext{i}}{3}right),(1;2;3)+expleft(frac{4pitext{i}}{3}right),(1;3;2)Biggr),sum_{sigmain K_4},sigma,.$$
                (Observe that $U$, $U'$, and $U''$ are in fact two-sided ideals of $R$ isomorphic to $mathbb{C}$.)





                For the second part, we can take $W$ to be generated by $$p:=1+(1;2)(3;4)-(1;3)(2;4)-(1;4)(2;3)=big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big),.$$
                Let $q:=(1;2;3),p$ and $r:=(1;3;2),p$. Note that $K_4$ acts on $p$ by scalar multiple (the scalars involved are $pm1$). Since $A_4=C_3K_4$ and $K_4$ is normal in $A_4$, $W$ is indeed spanned by $p$, $q$, and $r$, whence it is a $3$-dimensional left ideal of $R$. As $p^2=4p$, we may take the idempotent $epsilon_W$ to be $$epsilon_W:=frac{1}{4}p=frac{1}{4},big(1+(1;2)(3;4)big),big(1-(1;3)(2;4)big)$$ so that $W=Repsilon_W$.



                We can also define $W'$ and $W''$ to be the left ideals generated by $p'$ and $p''$, respectively, where
                $$p':=1+(1;3)(2;4)-(1;2)(3;4)-(1;4)(2;3)=big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
                and
                $$p'':=1+(1;4)(2;3)-(1;2)(3;4)-(1;3)(2;4)=big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),.$$
                Then, $W'$ is spanned by $p'$, $q':=(1;2;3),p'$, and $r':=(1;3;2),p'$, whereas $W''$ is spanned by $p''$, $q'':=(1;2;3),p''$, and $r'':=(1;3;2),p''$. The left ideals $W'$ and $W''$ are generated by the idempotents
                $$epsilon_{W'}:=frac{1}{4},p'=frac{1}{4},big(1+(1;3)(2;4)big),big(1-(1;2)(3;4)big)$$
                and $$epsilon_{W''}:=frac{1}{4},p''=frac{1}{4},big(1+(1;4)(2;3)big),big(1-(1;2)(3;4)big),,$$
                respectively. We can also see that $W$, $W'$, and $W''$ are isomorphic irreducible $3$-dimensional representations of $A_4$. While each of $W$, $W'$, and $W''$ is a left ideal of $R$, the sum $Woplus W'oplus W''$ is a simple two-sided ideal of $R$ isomorphic to $text{Mat}_{3times 3}(mathbb{C})$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered yesterday









                Batominovski

                30.9k23187




                30.9k23187






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000166%2ffinding-idempotents-in-group-algebra-over-a-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten