What can we say about the spectrum of the difference of positive elements?
up vote
2
down vote
favorite
Let $mathcal{A}$ be a unital $C^*$-algebra with $a,binmathcal{A}_+$ such that $|a|<|b|$. Does it follow that $a-bnotinmathcal{A}_+$?
I can find very little about the spectrum of the sum or difference of two elements. But I believe there should at least be some useful observations to be made for positive elements. For example, I did prove the following.
Let $mathcal{A}$ be a unital $C^*$-algebra with $ainmathcal{A}$ and $binmathcal{A}_+$ such that $|a|<|b|$. If $C^*(a,b)$ is abelian, then $a-bnotinmathcal{A}_+$?
Proof: Since $binmathcal{A}_+$ we have $|b|=r(b)$, so we find $xinsigma(b)$ with $x>|a|$. Then there exists a homomorphism $h$ on $C^*(a,b)$ such that $h(b)=x$. We find $h(a-b)=h(a)-h(b)leq|a|-h(b)<0$. Since $h(a-b)insigma(a-b)$, we get $a-bnotinmathcal{A}_+$.
spectral-theory c-star-algebras
add a comment |
up vote
2
down vote
favorite
Let $mathcal{A}$ be a unital $C^*$-algebra with $a,binmathcal{A}_+$ such that $|a|<|b|$. Does it follow that $a-bnotinmathcal{A}_+$?
I can find very little about the spectrum of the sum or difference of two elements. But I believe there should at least be some useful observations to be made for positive elements. For example, I did prove the following.
Let $mathcal{A}$ be a unital $C^*$-algebra with $ainmathcal{A}$ and $binmathcal{A}_+$ such that $|a|<|b|$. If $C^*(a,b)$ is abelian, then $a-bnotinmathcal{A}_+$?
Proof: Since $binmathcal{A}_+$ we have $|b|=r(b)$, so we find $xinsigma(b)$ with $x>|a|$. Then there exists a homomorphism $h$ on $C^*(a,b)$ such that $h(b)=x$. We find $h(a-b)=h(a)-h(b)leq|a|-h(b)<0$. Since $h(a-b)insigma(a-b)$, we get $a-bnotinmathcal{A}_+$.
spectral-theory c-star-algebras
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $mathcal{A}$ be a unital $C^*$-algebra with $a,binmathcal{A}_+$ such that $|a|<|b|$. Does it follow that $a-bnotinmathcal{A}_+$?
I can find very little about the spectrum of the sum or difference of two elements. But I believe there should at least be some useful observations to be made for positive elements. For example, I did prove the following.
Let $mathcal{A}$ be a unital $C^*$-algebra with $ainmathcal{A}$ and $binmathcal{A}_+$ such that $|a|<|b|$. If $C^*(a,b)$ is abelian, then $a-bnotinmathcal{A}_+$?
Proof: Since $binmathcal{A}_+$ we have $|b|=r(b)$, so we find $xinsigma(b)$ with $x>|a|$. Then there exists a homomorphism $h$ on $C^*(a,b)$ such that $h(b)=x$. We find $h(a-b)=h(a)-h(b)leq|a|-h(b)<0$. Since $h(a-b)insigma(a-b)$, we get $a-bnotinmathcal{A}_+$.
spectral-theory c-star-algebras
Let $mathcal{A}$ be a unital $C^*$-algebra with $a,binmathcal{A}_+$ such that $|a|<|b|$. Does it follow that $a-bnotinmathcal{A}_+$?
I can find very little about the spectrum of the sum or difference of two elements. But I believe there should at least be some useful observations to be made for positive elements. For example, I did prove the following.
Let $mathcal{A}$ be a unital $C^*$-algebra with $ainmathcal{A}$ and $binmathcal{A}_+$ such that $|a|<|b|$. If $C^*(a,b)$ is abelian, then $a-bnotinmathcal{A}_+$?
Proof: Since $binmathcal{A}_+$ we have $|b|=r(b)$, so we find $xinsigma(b)$ with $x>|a|$. Then there exists a homomorphism $h$ on $C^*(a,b)$ such that $h(b)=x$. We find $h(a-b)=h(a)-h(b)leq|a|-h(b)<0$. Since $h(a-b)insigma(a-b)$, we get $a-bnotinmathcal{A}_+$.
spectral-theory c-star-algebras
spectral-theory c-star-algebras
edited 2 days ago
asked Nov 15 at 23:03
SmileyCraft
71818
71818
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
The claim is false, as is the proof you give for the commutative case (the fallacy lies in $|b|-h(a)<0$). Consider $mathcal A=mathbb C$, $a=4$, and $b=7$.
EDIT
Note that now the claim is equivalent to "If $0leq aleq b$, then $|a|leq|b|$." This can be proven as follows: By functional calculus, we have $bleq|b|$, and thus $aleq|b|$. Applying functional calculus again gives $|a|leq|b|$.
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
|
show 1 more comment
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
The claim is false, as is the proof you give for the commutative case (the fallacy lies in $|b|-h(a)<0$). Consider $mathcal A=mathbb C$, $a=4$, and $b=7$.
EDIT
Note that now the claim is equivalent to "If $0leq aleq b$, then $|a|leq|b|$." This can be proven as follows: By functional calculus, we have $bleq|b|$, and thus $aleq|b|$. Applying functional calculus again gives $|a|leq|b|$.
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
|
show 1 more comment
up vote
1
down vote
accepted
The claim is false, as is the proof you give for the commutative case (the fallacy lies in $|b|-h(a)<0$). Consider $mathcal A=mathbb C$, $a=4$, and $b=7$.
EDIT
Note that now the claim is equivalent to "If $0leq aleq b$, then $|a|leq|b|$." This can be proven as follows: By functional calculus, we have $bleq|b|$, and thus $aleq|b|$. Applying functional calculus again gives $|a|leq|b|$.
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
|
show 1 more comment
up vote
1
down vote
accepted
up vote
1
down vote
accepted
The claim is false, as is the proof you give for the commutative case (the fallacy lies in $|b|-h(a)<0$). Consider $mathcal A=mathbb C$, $a=4$, and $b=7$.
EDIT
Note that now the claim is equivalent to "If $0leq aleq b$, then $|a|leq|b|$." This can be proven as follows: By functional calculus, we have $bleq|b|$, and thus $aleq|b|$. Applying functional calculus again gives $|a|leq|b|$.
The claim is false, as is the proof you give for the commutative case (the fallacy lies in $|b|-h(a)<0$). Consider $mathcal A=mathbb C$, $a=4$, and $b=7$.
EDIT
Note that now the claim is equivalent to "If $0leq aleq b$, then $|a|leq|b|$." This can be proven as follows: By functional calculus, we have $bleq|b|$, and thus $aleq|b|$. Applying functional calculus again gives $|a|leq|b|$.
edited 2 days ago
answered Nov 16 at 5:59
Aweygan
12.8k21441
12.8k21441
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
|
show 1 more comment
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
You are totally correct. I stupidly made a mistake in my writing, I confused $a$ and $b$, since I first used different names and then changed them :/ I fixed it now. The question should make sense now.
– SmileyCraft
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
No problem. I edited my response, let me know if anything is unclear.
– Aweygan
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
First, I think you swapped that $a$ and $b$ now. If that is the case, that is very understandable :P Second, I don't see how the statement is equivalent. Last, how does $bleq|a|$ give $|b|leq|a|$?
– SmileyCraft
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
I may have swapped them. I swapped them again, because this looks more natural. The statement I have is the contrapositive to the statement you made. The negation of the statement $a-bnotinmathcal A_+$ is $0leq a-b$ or $bleq a$, and the negation of $|a|<|b|$ is $|b|leq|a|$. Lastly, if $lambda$ is a positive real number, then $0leq bleqlambda$ means that $sigma(b)subset[0,lambda]$, and since the norm of $b$ is its spectral radius, we have $|b|leqlambda$. Now put $lambda=|a|$.
– Aweygan
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
Ah of course. Thank you!
– SmileyCraft
2 days ago
|
show 1 more comment
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000454%2fwhat-can-we-say-about-the-spectrum-of-the-difference-of-positive-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown