How to check whether Laguerre polynomials are orthogonal?
up vote
2
down vote
favorite
I've got the problem with checking if Laguerre polynomials for n=1,...,10 are orthogonal.
I have to create the list of these polynomials, then create the matrix of integrals from 0 to infinity. Something like:
M=Integrate[LaguerreL[i,x] LaguerreL[j,x] Exp[-x], {x,0,Infinity}]
And in the end I have to draw the dynamic drawing of these polynomials so that if I choose on graph n, from 0 to 20, the correct polynomial will be drawn with its derivative.
calculus-and-analysis polynomials
New contributor
add a comment |
up vote
2
down vote
favorite
I've got the problem with checking if Laguerre polynomials for n=1,...,10 are orthogonal.
I have to create the list of these polynomials, then create the matrix of integrals from 0 to infinity. Something like:
M=Integrate[LaguerreL[i,x] LaguerreL[j,x] Exp[-x], {x,0,Infinity}]
And in the end I have to draw the dynamic drawing of these polynomials so that if I choose on graph n, from 0 to 20, the correct polynomial will be drawn with its derivative.
calculus-and-analysis polynomials
New contributor
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?
– Michael E2
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
1
That's not the problem....
– Michael E2
2 hours ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I've got the problem with checking if Laguerre polynomials for n=1,...,10 are orthogonal.
I have to create the list of these polynomials, then create the matrix of integrals from 0 to infinity. Something like:
M=Integrate[LaguerreL[i,x] LaguerreL[j,x] Exp[-x], {x,0,Infinity}]
And in the end I have to draw the dynamic drawing of these polynomials so that if I choose on graph n, from 0 to 20, the correct polynomial will be drawn with its derivative.
calculus-and-analysis polynomials
New contributor
I've got the problem with checking if Laguerre polynomials for n=1,...,10 are orthogonal.
I have to create the list of these polynomials, then create the matrix of integrals from 0 to infinity. Something like:
M=Integrate[LaguerreL[i,x] LaguerreL[j,x] Exp[-x], {x,0,Infinity}]
And in the end I have to draw the dynamic drawing of these polynomials so that if I choose on graph n, from 0 to 20, the correct polynomial will be drawn with its derivative.
calculus-and-analysis polynomials
calculus-and-analysis polynomials
New contributor
New contributor
edited 2 hours ago
That Gravity Guy
2,0811514
2,0811514
New contributor
asked 3 hours ago
Crunchy
111
111
New contributor
New contributor
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?
– Michael E2
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
1
That's not the problem....
– Michael E2
2 hours ago
add a comment |
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?
– Michael E2
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
1
That's not the problem....
– Michael E2
2 hours ago
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?– Michael E2
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
1
1
That's not the problem....
– Michael E2
2 hours ago
That's not the problem....
– Michael E2
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
Integrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity},
Assumptions -> Element[{i, j}, Integers] && j > i > 0]
0
n = 10;
Outer[Integrate[LaguerreL[#, x] LaguerreL[#2, x] Exp[-x], {x, 0, ∞}] &,
Range[n], Range[n]] == IdentityMatrix[n]
True
Manipulate[Show[Plot[Evaluate@LaguerreL[Sort@n, x], {x, 0, 10},
PlotLegends -> ("LaguerreL[" <> ToString[#] <> ", x]" & /@ Sort[n]),
PlotRange -> {-15, 15}],
Plot[Evaluate[D[LaguerreL[Sort@n, z], z] /. z -> x], {x, 0, 10},
PlotLegends -> ("D[LaguerreL[" <> ToString[#] <> ", x], x]" & /@ Sort[n]),
PlotStyle -> Dashed]],
{{n, {5, 10, 17}}, Range[0,20], TogglerBar}]
add a comment |
up vote
2
down vote
Table[
NIntegrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity}],
{i, 10},
{j, 10}
] // Chop // Quiet
MatrixForm@%
Manipulate[
Plot[
{#, D[#, x]} &@LaguerreL[n, x] // Evaluate,
{x, 0, 10},
Frame -> True,
BaseStyle -> {11, FontFamily -> Times},
PlotLabel -> StringForm["n=``", n]
],
{n, 0, 20, 1, PopupMenu}
]
{{1., 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1., 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, 1., 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1., 0, 0, 0, 0, 0, 0}, {0,
0, 0, 0, 1., 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1., 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 1., 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1., 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 1., 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.}}
$left(
begin{array}{cccccccccc}
1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \
end{array}
right)$
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Integrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity},
Assumptions -> Element[{i, j}, Integers] && j > i > 0]
0
n = 10;
Outer[Integrate[LaguerreL[#, x] LaguerreL[#2, x] Exp[-x], {x, 0, ∞}] &,
Range[n], Range[n]] == IdentityMatrix[n]
True
Manipulate[Show[Plot[Evaluate@LaguerreL[Sort@n, x], {x, 0, 10},
PlotLegends -> ("LaguerreL[" <> ToString[#] <> ", x]" & /@ Sort[n]),
PlotRange -> {-15, 15}],
Plot[Evaluate[D[LaguerreL[Sort@n, z], z] /. z -> x], {x, 0, 10},
PlotLegends -> ("D[LaguerreL[" <> ToString[#] <> ", x], x]" & /@ Sort[n]),
PlotStyle -> Dashed]],
{{n, {5, 10, 17}}, Range[0,20], TogglerBar}]
add a comment |
up vote
3
down vote
Integrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity},
Assumptions -> Element[{i, j}, Integers] && j > i > 0]
0
n = 10;
Outer[Integrate[LaguerreL[#, x] LaguerreL[#2, x] Exp[-x], {x, 0, ∞}] &,
Range[n], Range[n]] == IdentityMatrix[n]
True
Manipulate[Show[Plot[Evaluate@LaguerreL[Sort@n, x], {x, 0, 10},
PlotLegends -> ("LaguerreL[" <> ToString[#] <> ", x]" & /@ Sort[n]),
PlotRange -> {-15, 15}],
Plot[Evaluate[D[LaguerreL[Sort@n, z], z] /. z -> x], {x, 0, 10},
PlotLegends -> ("D[LaguerreL[" <> ToString[#] <> ", x], x]" & /@ Sort[n]),
PlotStyle -> Dashed]],
{{n, {5, 10, 17}}, Range[0,20], TogglerBar}]
add a comment |
up vote
3
down vote
up vote
3
down vote
Integrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity},
Assumptions -> Element[{i, j}, Integers] && j > i > 0]
0
n = 10;
Outer[Integrate[LaguerreL[#, x] LaguerreL[#2, x] Exp[-x], {x, 0, ∞}] &,
Range[n], Range[n]] == IdentityMatrix[n]
True
Manipulate[Show[Plot[Evaluate@LaguerreL[Sort@n, x], {x, 0, 10},
PlotLegends -> ("LaguerreL[" <> ToString[#] <> ", x]" & /@ Sort[n]),
PlotRange -> {-15, 15}],
Plot[Evaluate[D[LaguerreL[Sort@n, z], z] /. z -> x], {x, 0, 10},
PlotLegends -> ("D[LaguerreL[" <> ToString[#] <> ", x], x]" & /@ Sort[n]),
PlotStyle -> Dashed]],
{{n, {5, 10, 17}}, Range[0,20], TogglerBar}]
Integrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity},
Assumptions -> Element[{i, j}, Integers] && j > i > 0]
0
n = 10;
Outer[Integrate[LaguerreL[#, x] LaguerreL[#2, x] Exp[-x], {x, 0, ∞}] &,
Range[n], Range[n]] == IdentityMatrix[n]
True
Manipulate[Show[Plot[Evaluate@LaguerreL[Sort@n, x], {x, 0, 10},
PlotLegends -> ("LaguerreL[" <> ToString[#] <> ", x]" & /@ Sort[n]),
PlotRange -> {-15, 15}],
Plot[Evaluate[D[LaguerreL[Sort@n, z], z] /. z -> x], {x, 0, 10},
PlotLegends -> ("D[LaguerreL[" <> ToString[#] <> ", x], x]" & /@ Sort[n]),
PlotStyle -> Dashed]],
{{n, {5, 10, 17}}, Range[0,20], TogglerBar}]
edited 1 hour ago
answered 2 hours ago
kglr
173k8195400
173k8195400
add a comment |
add a comment |
up vote
2
down vote
Table[
NIntegrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity}],
{i, 10},
{j, 10}
] // Chop // Quiet
MatrixForm@%
Manipulate[
Plot[
{#, D[#, x]} &@LaguerreL[n, x] // Evaluate,
{x, 0, 10},
Frame -> True,
BaseStyle -> {11, FontFamily -> Times},
PlotLabel -> StringForm["n=``", n]
],
{n, 0, 20, 1, PopupMenu}
]
{{1., 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1., 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, 1., 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1., 0, 0, 0, 0, 0, 0}, {0,
0, 0, 0, 1., 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1., 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 1., 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1., 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 1., 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.}}
$left(
begin{array}{cccccccccc}
1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \
end{array}
right)$
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
add a comment |
up vote
2
down vote
Table[
NIntegrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity}],
{i, 10},
{j, 10}
] // Chop // Quiet
MatrixForm@%
Manipulate[
Plot[
{#, D[#, x]} &@LaguerreL[n, x] // Evaluate,
{x, 0, 10},
Frame -> True,
BaseStyle -> {11, FontFamily -> Times},
PlotLabel -> StringForm["n=``", n]
],
{n, 0, 20, 1, PopupMenu}
]
{{1., 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1., 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, 1., 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1., 0, 0, 0, 0, 0, 0}, {0,
0, 0, 0, 1., 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1., 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 1., 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1., 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 1., 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.}}
$left(
begin{array}{cccccccccc}
1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \
end{array}
right)$
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
add a comment |
up vote
2
down vote
up vote
2
down vote
Table[
NIntegrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity}],
{i, 10},
{j, 10}
] // Chop // Quiet
MatrixForm@%
Manipulate[
Plot[
{#, D[#, x]} &@LaguerreL[n, x] // Evaluate,
{x, 0, 10},
Frame -> True,
BaseStyle -> {11, FontFamily -> Times},
PlotLabel -> StringForm["n=``", n]
],
{n, 0, 20, 1, PopupMenu}
]
{{1., 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1., 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, 1., 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1., 0, 0, 0, 0, 0, 0}, {0,
0, 0, 0, 1., 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1., 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 1., 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1., 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 1., 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.}}
$left(
begin{array}{cccccccccc}
1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \
end{array}
right)$
Table[
NIntegrate[LaguerreL[i, x] LaguerreL[j, x] Exp[-x], {x, 0, Infinity}],
{i, 10},
{j, 10}
] // Chop // Quiet
MatrixForm@%
Manipulate[
Plot[
{#, D[#, x]} &@LaguerreL[n, x] // Evaluate,
{x, 0, 10},
Frame -> True,
BaseStyle -> {11, FontFamily -> Times},
PlotLabel -> StringForm["n=``", n]
],
{n, 0, 20, 1, PopupMenu}
]
{{1., 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1., 0, 0, 0, 0, 0, 0, 0, 0}, {0,
0, 1., 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1., 0, 0, 0, 0, 0, 0}, {0,
0, 0, 0, 1., 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1., 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 1., 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1., 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 1., 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.}}
$left(
begin{array}{cccccccccc}
1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \
end{array}
right)$
answered 2 hours ago
That Gravity Guy
2,0811514
2,0811514
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
add a comment |
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
Thank you! :) Can this graph be simply modified? For example, when I increase n, on the graph will be shown graphs 1,2,3 to n, all of them on one graph?
– Crunchy
1 hour ago
add a comment |
Crunchy is a new contributor. Be nice, and check out our Code of Conduct.
Crunchy is a new contributor. Be nice, and check out our Code of Conduct.
Crunchy is a new contributor. Be nice, and check out our Code of Conduct.
Crunchy is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186935%2fhow-to-check-whether-laguerre-polynomials-are-orthogonal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Related: mathematica.stackexchange.com/questions/155030/…
– Michael E2
2 hours ago
Table[M, {i, 10}, {j, 10}]
?– Michael E2
2 hours ago
I have to integrate by exp(-x)dx instead of dx.
– Crunchy
2 hours ago
1
That's not the problem....
– Michael E2
2 hours ago