Proof verification for $lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}$
$begingroup$
Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$
Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$
By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$
Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$
Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$
It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$
Also $x_n > 0$. Now squeezing $x_n$ one may obtain:
$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$
Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$
Have i missed something?
calculus limits proof-verification limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$
Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$
By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$
Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$
Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$
It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$
Also $x_n > 0$. Now squeezing $x_n$ one may obtain:
$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$
Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$
Have i missed something?
calculus limits proof-verification limits-without-lhopital
$endgroup$
1
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
2
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
1
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57
add a comment |
$begingroup$
Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$
Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$
By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$
Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$
Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$
It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$
Also $x_n > 0$. Now squeezing $x_n$ one may obtain:
$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$
Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$
Have i missed something?
calculus limits proof-verification limits-without-lhopital
$endgroup$
Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$
Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$
By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$
Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$
Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$
It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$
Also $x_n > 0$. Now squeezing $x_n$ one may obtain:
$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$
Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$
Have i missed something?
calculus limits proof-verification limits-without-lhopital
calculus limits proof-verification limits-without-lhopital
edited Dec 5 '18 at 15:57
roman
asked Dec 5 '18 at 15:46
romanroman
2,14421223
2,14421223
1
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
2
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
1
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57
add a comment |
1
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
2
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
1
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57
1
1
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
2
2
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
1
1
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
HINT
As an alternative by ratio test
$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$
$endgroup$
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
add a comment |
$begingroup$
Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027226%2fproof-verification-for-lim-n-to-infty-fracan1a1a2-cdots1an%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT
As an alternative by ratio test
$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$
$endgroup$
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
add a comment |
$begingroup$
HINT
As an alternative by ratio test
$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$
$endgroup$
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
add a comment |
$begingroup$
HINT
As an alternative by ratio test
$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$
$endgroup$
HINT
As an alternative by ratio test
$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$
answered Dec 5 '18 at 15:57
gimusigimusi
92.8k84494
92.8k84494
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
add a comment |
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
I find this approach much more elegant, thanks!
$endgroup$
– roman
Dec 5 '18 at 15:58
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
$begingroup$
@roman Yes the good old ratio test seems very effective here :)
$endgroup$
– gimusi
Dec 5 '18 at 15:59
2
2
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
Nice application of the ratio test (+1).
$endgroup$
– Robert Z
Dec 5 '18 at 16:03
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
$begingroup$
@RobertZ Thanks a lot much appreciative from you! Regards
$endgroup$
– gimusi
Dec 5 '18 at 16:05
add a comment |
$begingroup$
Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$
$endgroup$
add a comment |
$begingroup$
Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$
$endgroup$
add a comment |
$begingroup$
Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$
$endgroup$
Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$
edited Dec 5 '18 at 16:05
answered Dec 5 '18 at 16:00
Robert ZRobert Z
95.9k1065136
95.9k1065136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027226%2fproof-verification-for-lim-n-to-infty-fracan1a1a2-cdots1an%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52
2
$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53
1
$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54
$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57