Proof verification for $lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}$












2












$begingroup$



Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$




Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$



By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$



Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$



Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$



It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$

Also $x_n > 0$. Now squeezing $x_n$ one may obtain:



$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$

Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$



Have i missed something?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:52








  • 2




    $begingroup$
    The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Dec 5 '18 at 15:53








  • 1




    $begingroup$
    One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:54










  • $begingroup$
    Thank you for the notices
    $endgroup$
    – roman
    Dec 5 '18 at 15:57
















2












$begingroup$



Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$




Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$



By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$



Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$



Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$



It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$

Also $x_n > 0$. Now squeezing $x_n$ one may obtain:



$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$

Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$



Have i missed something?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:52








  • 2




    $begingroup$
    The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Dec 5 '18 at 15:53








  • 1




    $begingroup$
    One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:54










  • $begingroup$
    Thank you for the notices
    $endgroup$
    – roman
    Dec 5 '18 at 15:57














2












2








2


2



$begingroup$



Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$




Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$



By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$



Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$



Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$



It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$

Also $x_n > 0$. Now squeezing $x_n$ one may obtain:



$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$

Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$



Have i missed something?










share|cite|improve this question











$endgroup$





Find the limit:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} text{for} a >0
$$




Let:
$$
begin{cases}
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}\
ninmathbb N
end{cases}
$$



By definition of exponent we may rewrite $x_n$ as:
$$
x_n = frac{a}{1+a}cdotfrac{a}{1+a^2}cdotsfrac{a}{1+a^n}
$$



Since $a>0$:
$$
forall a>0,kinmathbb N: frac{a}{1+a^k} < 1
$$



Choose $q_n$ to be in the following form:
$$
q_n = maxleft{frac{a}{1+a}, frac{a}{1+a^2}, dots,frac{a}{1+a^n}right}
$$



It follows that:
$$
x_n = frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} le q^n_n
$$

Also $x_n > 0$. Now squeezing $x_n$ one may obtain:



$$
0 le lim_{ntoinfty} x_n le lim_{ntoinfty} q^n_n = 0
$$

Thus:
$$
lim_{ntoinfty}frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)} = 0
$$



Have i missed something?







calculus limits proof-verification limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 5 '18 at 15:57







roman

















asked Dec 5 '18 at 15:46









romanroman

2,14421223




2,14421223








  • 1




    $begingroup$
    The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:52








  • 2




    $begingroup$
    The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Dec 5 '18 at 15:53








  • 1




    $begingroup$
    One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:54










  • $begingroup$
    Thank you for the notices
    $endgroup$
    – roman
    Dec 5 '18 at 15:57














  • 1




    $begingroup$
    The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:52








  • 2




    $begingroup$
    The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Dec 5 '18 at 15:53








  • 1




    $begingroup$
    One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
    $endgroup$
    – ajotatxe
    Dec 5 '18 at 15:54










  • $begingroup$
    Thank you for the notices
    $endgroup$
    – roman
    Dec 5 '18 at 15:57








1




1




$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52






$begingroup$
The logic is fine for me. Two notation details: when you define a sequence (like your $x_n$) don't forget the scope of $n$ ('for all $ninBbb N'$, for example). And the equation after 'Since $a>0$' doesn't need any bracket.
$endgroup$
– ajotatxe
Dec 5 '18 at 15:52






2




2




$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53






$begingroup$
The $q$, defined as the maximum over $frac a{1+a},...,frac a{1+a^n}$ depends on $n$, therefore it should be written as $q_n$. Then, it is not clear whether $q_n^n$ goes to zero. This is an issue.
$endgroup$
– астон вілла олоф мэллбэрг
Dec 5 '18 at 15:53






1




1




$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54




$begingroup$
One more detail: $x_nle q_n$ (strict inequality may be false, and you don't need it).
$endgroup$
– ajotatxe
Dec 5 '18 at 15:54












$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57




$begingroup$
Thank you for the notices
$endgroup$
– roman
Dec 5 '18 at 15:57










2 Answers
2






active

oldest

votes


















4












$begingroup$

HINT



As an alternative by ratio test



$$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I find this approach much more elegant, thanks!
    $endgroup$
    – roman
    Dec 5 '18 at 15:58










  • $begingroup$
    @roman Yes the good old ratio test seems very effective here :)
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:59






  • 2




    $begingroup$
    Nice application of the ratio test (+1).
    $endgroup$
    – Robert Z
    Dec 5 '18 at 16:03










  • $begingroup$
    @RobertZ Thanks a lot much appreciative from you! Regards
    $endgroup$
    – gimusi
    Dec 5 '18 at 16:05



















2












$begingroup$

Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
and for $ageq 1$,
$$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
where we used the fact that $1+a^kgeq 2a^{k/2}.$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027226%2fproof-verification-for-lim-n-to-infty-fracan1a1a2-cdots1an%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    HINT



    As an alternative by ratio test



    $$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I find this approach much more elegant, thanks!
      $endgroup$
      – roman
      Dec 5 '18 at 15:58










    • $begingroup$
      @roman Yes the good old ratio test seems very effective here :)
      $endgroup$
      – gimusi
      Dec 5 '18 at 15:59






    • 2




      $begingroup$
      Nice application of the ratio test (+1).
      $endgroup$
      – Robert Z
      Dec 5 '18 at 16:03










    • $begingroup$
      @RobertZ Thanks a lot much appreciative from you! Regards
      $endgroup$
      – gimusi
      Dec 5 '18 at 16:05
















    4












    $begingroup$

    HINT



    As an alternative by ratio test



    $$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I find this approach much more elegant, thanks!
      $endgroup$
      – roman
      Dec 5 '18 at 15:58










    • $begingroup$
      @roman Yes the good old ratio test seems very effective here :)
      $endgroup$
      – gimusi
      Dec 5 '18 at 15:59






    • 2




      $begingroup$
      Nice application of the ratio test (+1).
      $endgroup$
      – Robert Z
      Dec 5 '18 at 16:03










    • $begingroup$
      @RobertZ Thanks a lot much appreciative from you! Regards
      $endgroup$
      – gimusi
      Dec 5 '18 at 16:05














    4












    4








    4





    $begingroup$

    HINT



    As an alternative by ratio test



    $$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$






    share|cite|improve this answer









    $endgroup$



    HINT



    As an alternative by ratio test



    $$frac{x_{n+1}}{x_n}=frac{a^{n+1}}{(1+a)(1+a^2)cdots(1+a^{n+1})}frac{(1+a)(1+a^2)cdots(1+a^n)}{a^n}=frac{a}{1+a^{n+1}}$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 5 '18 at 15:57









    gimusigimusi

    92.8k84494




    92.8k84494












    • $begingroup$
      I find this approach much more elegant, thanks!
      $endgroup$
      – roman
      Dec 5 '18 at 15:58










    • $begingroup$
      @roman Yes the good old ratio test seems very effective here :)
      $endgroup$
      – gimusi
      Dec 5 '18 at 15:59






    • 2




      $begingroup$
      Nice application of the ratio test (+1).
      $endgroup$
      – Robert Z
      Dec 5 '18 at 16:03










    • $begingroup$
      @RobertZ Thanks a lot much appreciative from you! Regards
      $endgroup$
      – gimusi
      Dec 5 '18 at 16:05


















    • $begingroup$
      I find this approach much more elegant, thanks!
      $endgroup$
      – roman
      Dec 5 '18 at 15:58










    • $begingroup$
      @roman Yes the good old ratio test seems very effective here :)
      $endgroup$
      – gimusi
      Dec 5 '18 at 15:59






    • 2




      $begingroup$
      Nice application of the ratio test (+1).
      $endgroup$
      – Robert Z
      Dec 5 '18 at 16:03










    • $begingroup$
      @RobertZ Thanks a lot much appreciative from you! Regards
      $endgroup$
      – gimusi
      Dec 5 '18 at 16:05
















    $begingroup$
    I find this approach much more elegant, thanks!
    $endgroup$
    – roman
    Dec 5 '18 at 15:58




    $begingroup$
    I find this approach much more elegant, thanks!
    $endgroup$
    – roman
    Dec 5 '18 at 15:58












    $begingroup$
    @roman Yes the good old ratio test seems very effective here :)
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:59




    $begingroup$
    @roman Yes the good old ratio test seems very effective here :)
    $endgroup$
    – gimusi
    Dec 5 '18 at 15:59




    2




    2




    $begingroup$
    Nice application of the ratio test (+1).
    $endgroup$
    – Robert Z
    Dec 5 '18 at 16:03




    $begingroup$
    Nice application of the ratio test (+1).
    $endgroup$
    – Robert Z
    Dec 5 '18 at 16:03












    $begingroup$
    @RobertZ Thanks a lot much appreciative from you! Regards
    $endgroup$
    – gimusi
    Dec 5 '18 at 16:05




    $begingroup$
    @RobertZ Thanks a lot much appreciative from you! Regards
    $endgroup$
    – gimusi
    Dec 5 '18 at 16:05











    2












    $begingroup$

    Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
    $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
    and for $ageq 1$,
    $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
    where we used the fact that $1+a^kgeq 2a^{k/2}.$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
      $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
      and for $ageq 1$,
      $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
      where we used the fact that $1+a^kgeq 2a^{k/2}.$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
        $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
        and for $ageq 1$,
        $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
        where we used the fact that $1+a^kgeq 2a^{k/2}.$






        share|cite|improve this answer











        $endgroup$



        Following your idea to apply the squeeze theorem, the proof becomes simpler if we note that $0leq a<1$,
        $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq a^nto 0$$
        and for $ageq 1$,
        $$0leq frac{a^n}{(1+a)(1+a^2)cdots(1+a^n)}leq frac{a^n}{2^n a^{n(n+1)/4}}to 0$$
        where we used the fact that $1+a^kgeq 2a^{k/2}.$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 5 '18 at 16:05

























        answered Dec 5 '18 at 16:00









        Robert ZRobert Z

        95.9k1065136




        95.9k1065136






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027226%2fproof-verification-for-lim-n-to-infty-fracan1a1a2-cdots1an%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten