Prove that $lim_{n to infty} a_n = -infty $ if $ forall ngeq m: a_n leq a_m +2017$, and $-infty$ is a...
$begingroup$
Given a sequence ${a_n}_{n=1}^{infty} $ such that
$forall ngeq m: a_n leq a_m +2017$,
and $-infty$ is a substantial limit of $a_n$,
Prove that $lim_{n to infty} a_n = -infty$.
my attempt:
It's clear that: $text{lim inf}_{n to infty} (a_n) = -infty$.
I'd like to prove that $text{lim inf}_{n to infty} (a_n) = -infty$, and that will prove the claim.
there exist a sub-sequence of $a_n$,
let it be $a_{n_{k}}$ such that $$lim_{kto infty} a_{n_{k}} = -infty$$
then for every $ n geq m: $ $a_{n_{k}} leq a_{m_{k}} + 2017 $
$exists M > 0 text{ such that} forall Nin mathbb{N}: exists n geq m geq N: M leq |a_{n_{k}}| leq |a_{m_{k}} + 2017| $
I'm not sure how to continue from here in order to prove that the limit of the sub sequence is the limit of the sequence.
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Given a sequence ${a_n}_{n=1}^{infty} $ such that
$forall ngeq m: a_n leq a_m +2017$,
and $-infty$ is a substantial limit of $a_n$,
Prove that $lim_{n to infty} a_n = -infty$.
my attempt:
It's clear that: $text{lim inf}_{n to infty} (a_n) = -infty$.
I'd like to prove that $text{lim inf}_{n to infty} (a_n) = -infty$, and that will prove the claim.
there exist a sub-sequence of $a_n$,
let it be $a_{n_{k}}$ such that $$lim_{kto infty} a_{n_{k}} = -infty$$
then for every $ n geq m: $ $a_{n_{k}} leq a_{m_{k}} + 2017 $
$exists M > 0 text{ such that} forall Nin mathbb{N}: exists n geq m geq N: M leq |a_{n_{k}}| leq |a_{m_{k}} + 2017| $
I'm not sure how to continue from here in order to prove that the limit of the sub sequence is the limit of the sequence.
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Given a sequence ${a_n}_{n=1}^{infty} $ such that
$forall ngeq m: a_n leq a_m +2017$,
and $-infty$ is a substantial limit of $a_n$,
Prove that $lim_{n to infty} a_n = -infty$.
my attempt:
It's clear that: $text{lim inf}_{n to infty} (a_n) = -infty$.
I'd like to prove that $text{lim inf}_{n to infty} (a_n) = -infty$, and that will prove the claim.
there exist a sub-sequence of $a_n$,
let it be $a_{n_{k}}$ such that $$lim_{kto infty} a_{n_{k}} = -infty$$
then for every $ n geq m: $ $a_{n_{k}} leq a_{m_{k}} + 2017 $
$exists M > 0 text{ such that} forall Nin mathbb{N}: exists n geq m geq N: M leq |a_{n_{k}}| leq |a_{m_{k}} + 2017| $
I'm not sure how to continue from here in order to prove that the limit of the sub sequence is the limit of the sequence.
real-analysis calculus sequences-and-series convergence
$endgroup$
Given a sequence ${a_n}_{n=1}^{infty} $ such that
$forall ngeq m: a_n leq a_m +2017$,
and $-infty$ is a substantial limit of $a_n$,
Prove that $lim_{n to infty} a_n = -infty$.
my attempt:
It's clear that: $text{lim inf}_{n to infty} (a_n) = -infty$.
I'd like to prove that $text{lim inf}_{n to infty} (a_n) = -infty$, and that will prove the claim.
there exist a sub-sequence of $a_n$,
let it be $a_{n_{k}}$ such that $$lim_{kto infty} a_{n_{k}} = -infty$$
then for every $ n geq m: $ $a_{n_{k}} leq a_{m_{k}} + 2017 $
$exists M > 0 text{ such that} forall Nin mathbb{N}: exists n geq m geq N: M leq |a_{n_{k}}| leq |a_{m_{k}} + 2017| $
I'm not sure how to continue from here in order to prove that the limit of the sub sequence is the limit of the sequence.
real-analysis calculus sequences-and-series convergence
real-analysis calculus sequences-and-series convergence
edited Dec 5 '18 at 17:14
Martin Sleziak
44.8k9118272
44.8k9118272
asked Dec 5 '18 at 16:12
JnevenJneven
826322
826322
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Fix $m$ then $$limsup_{ntoinfty } a_n leq limsup_{ntoinfty } (a_m +2017 )= a_m +2017$$
Now $$limsup_{ntoinfty } a_n=liminf_{mtoinfty } ( limsup_{ntoinfty } a_n) leq liminf_{mtoinfty } ( a_m +2017)=2017+liminf_{mtoinfty } a_m =-infty$$
$endgroup$
add a comment |
$begingroup$
If $liminf_{ktoinfty} a_{n_k} = -infty$ then for every $M$ there is some $K$ such that $a_{n_k} < M$ for every $k geq K$, and by the condition stated, $a_n leq a_{n_k} + 2017 < M + 2017$ for every $ngeq n_k$. If we pick $M = -N-2017$ then $a_n < -N$ for every $ngeq n_k$, so the tail of the sequence can be made arbitrarily small for $n$ large enough, which is the definition of $lim_{ntoinfty} a_n = -infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027266%2fprove-that-lim-n-to-infty-a-n-infty-if-forall-n-geq-m-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $m$ then $$limsup_{ntoinfty } a_n leq limsup_{ntoinfty } (a_m +2017 )= a_m +2017$$
Now $$limsup_{ntoinfty } a_n=liminf_{mtoinfty } ( limsup_{ntoinfty } a_n) leq liminf_{mtoinfty } ( a_m +2017)=2017+liminf_{mtoinfty } a_m =-infty$$
$endgroup$
add a comment |
$begingroup$
Fix $m$ then $$limsup_{ntoinfty } a_n leq limsup_{ntoinfty } (a_m +2017 )= a_m +2017$$
Now $$limsup_{ntoinfty } a_n=liminf_{mtoinfty } ( limsup_{ntoinfty } a_n) leq liminf_{mtoinfty } ( a_m +2017)=2017+liminf_{mtoinfty } a_m =-infty$$
$endgroup$
add a comment |
$begingroup$
Fix $m$ then $$limsup_{ntoinfty } a_n leq limsup_{ntoinfty } (a_m +2017 )= a_m +2017$$
Now $$limsup_{ntoinfty } a_n=liminf_{mtoinfty } ( limsup_{ntoinfty } a_n) leq liminf_{mtoinfty } ( a_m +2017)=2017+liminf_{mtoinfty } a_m =-infty$$
$endgroup$
Fix $m$ then $$limsup_{ntoinfty } a_n leq limsup_{ntoinfty } (a_m +2017 )= a_m +2017$$
Now $$limsup_{ntoinfty } a_n=liminf_{mtoinfty } ( limsup_{ntoinfty } a_n) leq liminf_{mtoinfty } ( a_m +2017)=2017+liminf_{mtoinfty } a_m =-infty$$
answered Dec 5 '18 at 16:52
MotylaNogaTomkaMazuraMotylaNogaTomkaMazura
6,562917
6,562917
add a comment |
add a comment |
$begingroup$
If $liminf_{ktoinfty} a_{n_k} = -infty$ then for every $M$ there is some $K$ such that $a_{n_k} < M$ for every $k geq K$, and by the condition stated, $a_n leq a_{n_k} + 2017 < M + 2017$ for every $ngeq n_k$. If we pick $M = -N-2017$ then $a_n < -N$ for every $ngeq n_k$, so the tail of the sequence can be made arbitrarily small for $n$ large enough, which is the definition of $lim_{ntoinfty} a_n = -infty$.
$endgroup$
add a comment |
$begingroup$
If $liminf_{ktoinfty} a_{n_k} = -infty$ then for every $M$ there is some $K$ such that $a_{n_k} < M$ for every $k geq K$, and by the condition stated, $a_n leq a_{n_k} + 2017 < M + 2017$ for every $ngeq n_k$. If we pick $M = -N-2017$ then $a_n < -N$ for every $ngeq n_k$, so the tail of the sequence can be made arbitrarily small for $n$ large enough, which is the definition of $lim_{ntoinfty} a_n = -infty$.
$endgroup$
add a comment |
$begingroup$
If $liminf_{ktoinfty} a_{n_k} = -infty$ then for every $M$ there is some $K$ such that $a_{n_k} < M$ for every $k geq K$, and by the condition stated, $a_n leq a_{n_k} + 2017 < M + 2017$ for every $ngeq n_k$. If we pick $M = -N-2017$ then $a_n < -N$ for every $ngeq n_k$, so the tail of the sequence can be made arbitrarily small for $n$ large enough, which is the definition of $lim_{ntoinfty} a_n = -infty$.
$endgroup$
If $liminf_{ktoinfty} a_{n_k} = -infty$ then for every $M$ there is some $K$ such that $a_{n_k} < M$ for every $k geq K$, and by the condition stated, $a_n leq a_{n_k} + 2017 < M + 2017$ for every $ngeq n_k$. If we pick $M = -N-2017$ then $a_n < -N$ for every $ngeq n_k$, so the tail of the sequence can be made arbitrarily small for $n$ large enough, which is the definition of $lim_{ntoinfty} a_n = -infty$.
answered Dec 5 '18 at 16:48
mlerma54mlerma54
1,177148
1,177148
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027266%2fprove-that-lim-n-to-infty-a-n-infty-if-forall-n-geq-m-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown