Inverse Fourier transform with a $delta$-function integrand












2












$begingroup$


I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$



Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.



But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
    $endgroup$
    – paul garrett
    Dec 7 '18 at 0:49
















2












$begingroup$


I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$



Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.



But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
    $endgroup$
    – paul garrett
    Dec 7 '18 at 0:49














2












2








2





$begingroup$


I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$



Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.



But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.










share|cite|improve this question











$endgroup$




I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$



Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.



But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.







functions fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 1:00







drerD

















asked Dec 7 '18 at 0:44









drerDdrerD

1559




1559












  • $begingroup$
    Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
    $endgroup$
    – paul garrett
    Dec 7 '18 at 0:49


















  • $begingroup$
    Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
    $endgroup$
    – paul garrett
    Dec 7 '18 at 0:49
















$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49




$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49










1 Answer
1






active

oldest

votes


















2












$begingroup$

You don't need to know, just apply the definition



begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029293%2finverse-fourier-transform-with-a-delta-function-integrand%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    You don't need to know, just apply the definition



    begin{eqnarray}
    f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
    &=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
    &=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
    &=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
    end{eqnarray}






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      You don't need to know, just apply the definition



      begin{eqnarray}
      f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
      &=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
      &=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
      &=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
      end{eqnarray}






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        You don't need to know, just apply the definition



        begin{eqnarray}
        f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
        &=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
        &=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
        &=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
        end{eqnarray}






        share|cite|improve this answer









        $endgroup$



        You don't need to know, just apply the definition



        begin{eqnarray}
        f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
        &=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
        &=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
        &=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
        end{eqnarray}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 7 '18 at 0:55









        caveraccaverac

        14.6k31130




        14.6k31130






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029293%2finverse-fourier-transform-with-a-delta-function-integrand%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten