Inverse Fourier transform with a $delta$-function integrand
$begingroup$
I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$
Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.
But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.
functions fourier-transform
$endgroup$
add a comment |
$begingroup$
I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$
Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.
But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.
functions fourier-transform
$endgroup$
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49
add a comment |
$begingroup$
I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$
Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.
But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.
functions fourier-transform
$endgroup$
I'm self-studying math and trying to find the inverse Fourier transform of $frac{4+w^2}{1+w^2}(4pi * (delta(w-2)+delta(w+2)))$
Based on wolframalpha, the result is $32/5sqrt{2pi}cos(2t)$.
But I can't even find the fourier transform of $frac{4+w^2}{1+w^2}$ because there doesn't seem to have a Fourier transform pair in my table for $w^2$ in the numerator.
functions fourier-transform
functions fourier-transform
edited Dec 7 '18 at 1:00
drerD
asked Dec 7 '18 at 0:44
drerDdrerD
1559
1559
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49
add a comment |
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You don't need to know, just apply the definition
begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029293%2finverse-fourier-transform-with-a-delta-function-integrand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You don't need to know, just apply the definition
begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
You don't need to know, just apply the definition
begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
You don't need to know, just apply the definition
begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}
$endgroup$
You don't need to know, just apply the definition
begin{eqnarray}
f(t) &=& frac{1}{2pi}int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}[4pidelta(omega - 2) + 4pidelta(omega + 2)] e^{iomega t}{rm d}omega \
&=& 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2}4pidelta(omega - 2) e^{iomega t}{rm d}omega + 2int_{-infty}^{+infty} frac{4 + omega^2}{1 + omega^2} delta(omega + 2) e^{iomega t}{rm d}omega \
&=& 2 frac{4 + 2^2}{1 + 2^2}e^{2it} + 2frac{4+2^2}{1 + 2^2}e^{-2it} \
&=&frac{32}{5}left(frac{e^{2it} + e^{-2it}}{2}right) = frac{32}{5}cos(2t)
end{eqnarray}
answered Dec 7 '18 at 0:55
caveraccaverac
14.6k31130
14.6k31130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029293%2finverse-fourier-transform-with-a-delta-function-integrand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: subtracting the identically $1$ function from your $(4+w^2)/(1+w^2)$, you're left with $4/(1+w^2)$. The (tempered distribution) Fourier transform of $1$ is $delta$. The leftover ($4$ times) $1/(1+w^2)$ is in $L^1(mathbb R)$, and can easily be computed by complex analysis methods ("residues"). Up to some constants, it's $e^{-|x|}$.
$endgroup$
– paul garrett
Dec 7 '18 at 0:49