Baaad: $int_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx$
$begingroup$
I am in the process of proving
$$I=int_0^infty frac{arctan x}{x^4+x^2+1}mathrm{d}x=frac{pi^2}{8sqrt{3}}-frac23G+fracpi{12}log(2+sqrt{3})$$
And I have gotten as far as showing that
$$2I=frac{pi^2}{4sqrt{3}}+J$$
Where
$$J=int_0^infty logbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{mathrm{d}x}{1+x^2}$$
Then we preform $x=tan u$ to see that
$$J=int_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx$$
Which I have been stuck on for the past while. I tried defining
$$k(a)=int_0^{pi/2}log(2+sin2ax)mathrm dx$$
Which gives
$$J=k(1)-k(-1)$$
Then differentiating under the integral:
$$k'(a)=2int_0^{pi/2}frac{xcos2ax}{2+sin2ax}mathrm dx$$
We may integrate by parts with $u=x$ to get a differential equation
$$ak'(a)+k(a)=fracpi2log(2+sinpi a)$$
With initial condition
$$k(0)=fracpi2log2$$
And from here I have no idea what to do.
I also tried tangent half angle substitution, but that just gave me the original expression for $J$.
I'm hoping that there is some really easy method that just never occurred to me... Any tips?
Edit
As was pointed out in the comments, I could consider
$$P(a)=frac12int_0^pi log(a+sin x)mathrm dx\Rightarrow P(0)=-fracpi2log2$$
And
$$
begin{align}
Q(a)=½int_0^pi log(a-sin x)mathrm dx\
=½int_0^pilog[-(-a+sin x)]mathrm dx\
=½int_0^pibigg(log(-1)+log(-a+sin x)bigg)mathrm dx\
=&frac{ipi}2int_0^pimathrm{d}x+frac12int_0^pilog(-a+sin x)mathrm dx\
=&frac{ipi^2}2+P(-a)
end{align}
$$
Hence
$$J=P(2)-Q(2)=P(2)-P(-2)-frac{ipi^2}2$$
So now we care about $P(a)$. Differentiating under the integral, we have
$$P'(a)=frac12int_0^pi frac{mathrm{d}x}{a+sin x}$$
With a healthy dose of Tangent half angle substitution,
$$P'(a)=int_0^infty frac{mathrm{d}x}{ax^2+2x+a}$$
completing the square, we have
$$P'(a)=int_0^infty frac{mathrm{d}x}{a(x+frac1a)^2+g}$$
Where $g=a-frac1a$. With the right trigonometric substitution,
$$P'(a)=frac1{sqrt{a^2+1}}int_{x_1}^{pi/2}mathrm{d}x$$
Where $x_1=arctanfrac1{sqrt{a^2+1}}$. Then using
$$arctanfrac1x=fracpi2-arctan x$$
We have that
$$P'(a)=frac1{sqrt{a^2+1}}arctansqrt{a^2+1}$$
So we end up with something I don't know how to to deal with (what a surprise)
$$P(a)=intarctansqrt{a^2+1}frac{mathrm{d}a}{sqrt{a^2+1}}$$
Could you help me out with this last one? Thanks.
integration closed-form
$endgroup$
|
show 2 more comments
$begingroup$
I am in the process of proving
$$I=int_0^infty frac{arctan x}{x^4+x^2+1}mathrm{d}x=frac{pi^2}{8sqrt{3}}-frac23G+fracpi{12}log(2+sqrt{3})$$
And I have gotten as far as showing that
$$2I=frac{pi^2}{4sqrt{3}}+J$$
Where
$$J=int_0^infty logbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{mathrm{d}x}{1+x^2}$$
Then we preform $x=tan u$ to see that
$$J=int_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx$$
Which I have been stuck on for the past while. I tried defining
$$k(a)=int_0^{pi/2}log(2+sin2ax)mathrm dx$$
Which gives
$$J=k(1)-k(-1)$$
Then differentiating under the integral:
$$k'(a)=2int_0^{pi/2}frac{xcos2ax}{2+sin2ax}mathrm dx$$
We may integrate by parts with $u=x$ to get a differential equation
$$ak'(a)+k(a)=fracpi2log(2+sinpi a)$$
With initial condition
$$k(0)=fracpi2log2$$
And from here I have no idea what to do.
I also tried tangent half angle substitution, but that just gave me the original expression for $J$.
I'm hoping that there is some really easy method that just never occurred to me... Any tips?
Edit
As was pointed out in the comments, I could consider
$$P(a)=frac12int_0^pi log(a+sin x)mathrm dx\Rightarrow P(0)=-fracpi2log2$$
And
$$
begin{align}
Q(a)=½int_0^pi log(a-sin x)mathrm dx\
=½int_0^pilog[-(-a+sin x)]mathrm dx\
=½int_0^pibigg(log(-1)+log(-a+sin x)bigg)mathrm dx\
=&frac{ipi}2int_0^pimathrm{d}x+frac12int_0^pilog(-a+sin x)mathrm dx\
=&frac{ipi^2}2+P(-a)
end{align}
$$
Hence
$$J=P(2)-Q(2)=P(2)-P(-2)-frac{ipi^2}2$$
So now we care about $P(a)$. Differentiating under the integral, we have
$$P'(a)=frac12int_0^pi frac{mathrm{d}x}{a+sin x}$$
With a healthy dose of Tangent half angle substitution,
$$P'(a)=int_0^infty frac{mathrm{d}x}{ax^2+2x+a}$$
completing the square, we have
$$P'(a)=int_0^infty frac{mathrm{d}x}{a(x+frac1a)^2+g}$$
Where $g=a-frac1a$. With the right trigonometric substitution,
$$P'(a)=frac1{sqrt{a^2+1}}int_{x_1}^{pi/2}mathrm{d}x$$
Where $x_1=arctanfrac1{sqrt{a^2+1}}$. Then using
$$arctanfrac1x=fracpi2-arctan x$$
We have that
$$P'(a)=frac1{sqrt{a^2+1}}arctansqrt{a^2+1}$$
So we end up with something I don't know how to to deal with (what a surprise)
$$P(a)=intarctansqrt{a^2+1}frac{mathrm{d}a}{sqrt{a^2+1}}$$
Could you help me out with this last one? Thanks.
integration closed-form
$endgroup$
1
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
1
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17
|
show 2 more comments
$begingroup$
I am in the process of proving
$$I=int_0^infty frac{arctan x}{x^4+x^2+1}mathrm{d}x=frac{pi^2}{8sqrt{3}}-frac23G+fracpi{12}log(2+sqrt{3})$$
And I have gotten as far as showing that
$$2I=frac{pi^2}{4sqrt{3}}+J$$
Where
$$J=int_0^infty logbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{mathrm{d}x}{1+x^2}$$
Then we preform $x=tan u$ to see that
$$J=int_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx$$
Which I have been stuck on for the past while. I tried defining
$$k(a)=int_0^{pi/2}log(2+sin2ax)mathrm dx$$
Which gives
$$J=k(1)-k(-1)$$
Then differentiating under the integral:
$$k'(a)=2int_0^{pi/2}frac{xcos2ax}{2+sin2ax}mathrm dx$$
We may integrate by parts with $u=x$ to get a differential equation
$$ak'(a)+k(a)=fracpi2log(2+sinpi a)$$
With initial condition
$$k(0)=fracpi2log2$$
And from here I have no idea what to do.
I also tried tangent half angle substitution, but that just gave me the original expression for $J$.
I'm hoping that there is some really easy method that just never occurred to me... Any tips?
Edit
As was pointed out in the comments, I could consider
$$P(a)=frac12int_0^pi log(a+sin x)mathrm dx\Rightarrow P(0)=-fracpi2log2$$
And
$$
begin{align}
Q(a)=½int_0^pi log(a-sin x)mathrm dx\
=½int_0^pilog[-(-a+sin x)]mathrm dx\
=½int_0^pibigg(log(-1)+log(-a+sin x)bigg)mathrm dx\
=&frac{ipi}2int_0^pimathrm{d}x+frac12int_0^pilog(-a+sin x)mathrm dx\
=&frac{ipi^2}2+P(-a)
end{align}
$$
Hence
$$J=P(2)-Q(2)=P(2)-P(-2)-frac{ipi^2}2$$
So now we care about $P(a)$. Differentiating under the integral, we have
$$P'(a)=frac12int_0^pi frac{mathrm{d}x}{a+sin x}$$
With a healthy dose of Tangent half angle substitution,
$$P'(a)=int_0^infty frac{mathrm{d}x}{ax^2+2x+a}$$
completing the square, we have
$$P'(a)=int_0^infty frac{mathrm{d}x}{a(x+frac1a)^2+g}$$
Where $g=a-frac1a$. With the right trigonometric substitution,
$$P'(a)=frac1{sqrt{a^2+1}}int_{x_1}^{pi/2}mathrm{d}x$$
Where $x_1=arctanfrac1{sqrt{a^2+1}}$. Then using
$$arctanfrac1x=fracpi2-arctan x$$
We have that
$$P'(a)=frac1{sqrt{a^2+1}}arctansqrt{a^2+1}$$
So we end up with something I don't know how to to deal with (what a surprise)
$$P(a)=intarctansqrt{a^2+1}frac{mathrm{d}a}{sqrt{a^2+1}}$$
Could you help me out with this last one? Thanks.
integration closed-form
$endgroup$
I am in the process of proving
$$I=int_0^infty frac{arctan x}{x^4+x^2+1}mathrm{d}x=frac{pi^2}{8sqrt{3}}-frac23G+fracpi{12}log(2+sqrt{3})$$
And I have gotten as far as showing that
$$2I=frac{pi^2}{4sqrt{3}}+J$$
Where
$$J=int_0^infty logbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{mathrm{d}x}{1+x^2}$$
Then we preform $x=tan u$ to see that
$$J=int_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx$$
Which I have been stuck on for the past while. I tried defining
$$k(a)=int_0^{pi/2}log(2+sin2ax)mathrm dx$$
Which gives
$$J=k(1)-k(-1)$$
Then differentiating under the integral:
$$k'(a)=2int_0^{pi/2}frac{xcos2ax}{2+sin2ax}mathrm dx$$
We may integrate by parts with $u=x$ to get a differential equation
$$ak'(a)+k(a)=fracpi2log(2+sinpi a)$$
With initial condition
$$k(0)=fracpi2log2$$
And from here I have no idea what to do.
I also tried tangent half angle substitution, but that just gave me the original expression for $J$.
I'm hoping that there is some really easy method that just never occurred to me... Any tips?
Edit
As was pointed out in the comments, I could consider
$$P(a)=frac12int_0^pi log(a+sin x)mathrm dx\Rightarrow P(0)=-fracpi2log2$$
And
$$
begin{align}
Q(a)=½int_0^pi log(a-sin x)mathrm dx\
=½int_0^pilog[-(-a+sin x)]mathrm dx\
=½int_0^pibigg(log(-1)+log(-a+sin x)bigg)mathrm dx\
=&frac{ipi}2int_0^pimathrm{d}x+frac12int_0^pilog(-a+sin x)mathrm dx\
=&frac{ipi^2}2+P(-a)
end{align}
$$
Hence
$$J=P(2)-Q(2)=P(2)-P(-2)-frac{ipi^2}2$$
So now we care about $P(a)$. Differentiating under the integral, we have
$$P'(a)=frac12int_0^pi frac{mathrm{d}x}{a+sin x}$$
With a healthy dose of Tangent half angle substitution,
$$P'(a)=int_0^infty frac{mathrm{d}x}{ax^2+2x+a}$$
completing the square, we have
$$P'(a)=int_0^infty frac{mathrm{d}x}{a(x+frac1a)^2+g}$$
Where $g=a-frac1a$. With the right trigonometric substitution,
$$P'(a)=frac1{sqrt{a^2+1}}int_{x_1}^{pi/2}mathrm{d}x$$
Where $x_1=arctanfrac1{sqrt{a^2+1}}$. Then using
$$arctanfrac1x=fracpi2-arctan x$$
We have that
$$P'(a)=frac1{sqrt{a^2+1}}arctansqrt{a^2+1}$$
So we end up with something I don't know how to to deal with (what a surprise)
$$P(a)=intarctansqrt{a^2+1}frac{mathrm{d}a}{sqrt{a^2+1}}$$
Could you help me out with this last one? Thanks.
integration closed-form
integration closed-form
edited Mar 3 at 1:43
clathratus
asked Dec 18 '18 at 1:42
clathratusclathratus
5,0101338
5,0101338
1
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
1
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17
|
show 2 more comments
1
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
1
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17
1
1
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
1
1
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17
|
show 2 more comments
3 Answers
3
active
oldest
votes
$begingroup$
$$J=int_0^{pi/2}lnleft(frac{2+sin2x}{2-sin2x}right)mathrm dxoverset{2x=t}=frac12 int_0^pi lnleft(frac{1+frac12sin t}{1-frac12sin t}right)mathrm dt=int_0^frac{pi}{2}lnleft(frac{1+frac12sin x}{1-frac12sin x }right)mathrm dx$$
$${lnleft(frac{1+ysin x}{1-ysin x}right)+c=2intfrac{sin x}{1-y^2sin^2x}dy}Rightarrowlnleft(frac{1+frac12sin t}{1-frac12sin t }right)=2int_0^frac{1}{2}frac{sin x}{1-y^2sin^2x}dy tag1$$
By Fubini's theorem we may interchange the order of the integrals and using $(1)$ we get: $$J=2int_0^frac{pi}{2}int_0^frac12 frac{sin x}{1-y^2sin^2x}dydx=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{1-y^2sin^2x}dxdy=$$
$$=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{y^2cos^2x +1-y^2} dxdy=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{yx}{sqrt{1-y^2}}right)bigg|_0^1 dy=$$
$$=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{y}{sqrt{1-y^2}}right)dyoverset{y=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx=$$
$$=2int_0^{frac{pi}{6}} x left(lnleft(tan frac{x}{2}right)right)'dx=2x lnleft(tan frac{x}{2}right)bigg|_0^{frac{pi}{6}} -2{int_0^{frac{pi}{6}} lnleft(tan frac{x}{2}right)dx}=$$
$$overset{frac{x}{2}=t}=frac{pi}{3}ln(2-sqrt 3) -4int_0^frac{pi}{12}ln (tan t)dt=-frac{pi}{3}ln(2+sqrt 3) +frac{8}{3}G$$ $G$ is the Catalan's constant and for the last integral see here.
Also note that you should have: $$2I=frac{pi^2}{4sqrt 3}- int_0^inftyfrac{(x^2-1)arctan x}{x^4+x^2+1}dx=frac{pi^2}{4sqrt 3}-frac12underset{=J}{int_0^infty lnbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{dx}{1+x^2}}$$
As an alternative employ Feynman's trick for $,displaystyle{I(a)=int_0^frac{pi}{2}lnleft(frac{1+asin x}{1-asin x}right)dt},$ to get:
$$I'(a)=int_0^frac{pi}{2} left(frac{sin x}{1+asin x}+frac{sin x}{1-asin x}right)dx =2int_0^frac{pi}{2} frac{sin x}{1-a^2sin^2 x}dx=$$
$$=2int_0^frac{pi}{2} frac{sin x}{a^2cos^2 x + left(sqrt{1-a^2}right)^2}dx=frac{2}{a^2}int_0^1 frac{d(cos x)}{cos^2x +left(frac{sqrt{1-a^2}}{a}right)^2}=$$
$$=frac{2a}{a^2sqrt{1-a^2}}arctanleft(frac{ax}{sqrt{1-a^2}}right)bigg|_0^1=frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)$$
$$I(0)=0 Rightarrow J=I(tfrac12)=int_0^frac12 frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)overset{a=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx$$
And the rest part is found above.
$endgroup$
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
|
show 2 more comments
$begingroup$
A Possible way: Consider
$$I(a)=int_{0}^{+infty}frac{arctan(ax)}{1+x^2+x^4} dx$$
and
$$I'(a)=int_{0}^{+infty}frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=int_{0}^{+infty}frac{1}{(1+y+y^2)(1+a^2y)}dx$$
and
$$frac{1}{(1+y+y^2)(1+a^2y)}= frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$
we can also calculate $I'(a)$ by complex integration (if you've learned that).
Thanks to Dylan for his advice.
$endgroup$
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
add a comment |
$begingroup$
Result
I find that the integral has a closed form given by
$$i = intlimits_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx = frac{1}{3} left(8 C-pi log left(2+sqrt{3}right)right) simeq 1.06346tag{1}$$
where
$$C = sum _{k=1}^{infty } frac{(-1)^{k+1}}{(2 k-1)^2} simeq 0.915966$$
is Catalan's constant.
Heuristic derivation
Notice trivially that because of the symmtery of the integrand the integral can be written as twice the integral from $0$ to $frac{pi}{4}$ which we shall utilize in what follows.
The basic idea is the series expansion
$$log left(frac{1+z}{1-z}right)=2tanh ^{-1}(z) = 2 sum _{k=1}^{infty } frac{z^{2 k-1}}{2 k-1},|z|<1 tag{2}$$
The integral is then to be done over the odd powers of the $sin$ with the result
$$int_0^{frac{pi }{4}} sin ^{2 k-1}(2 x) , dx = frac{sqrt{pi } Gamma (k)}{4 Gamma left(k+frac{1}{2}right)}tag{3}$$
Assembling the pieces the sum to be taken to represent $i$ becomes
$$i_s = sum _{k=1}^{infty } frac{sqrt{pi } Gamma (k)}{(2 k-1) 2^{2 k-1} Gamma left(k+frac{1}{2}right)}tag{4}$$
and this sum is immediately computed by Mathematica to give the compact result $(1)$.
Let us make the sum more transparent using the chain
$$frac{sqrt{pi } Gamma (k)}{Gamma left(k+frac{1}{2}right)}=Bleft(frac{1}{2},kright)=int_0^1 frac{t^{k-1}}{sqrt{1-t}} , dttag{5}$$
and doing the sum under the integral
$$sum _{k=1}^{infty } frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t}}tag{6}$$
leads finally to the integral
$$int_0^1 frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t} sqrt{1-t}} , dttag{7}$$
for which Mathematica again quickly gives (1).
But there must be a shorter way ... yes, it is, substituting $sin (2 x)=sqrt{t}$ in the original integral gives (7) directly.
$endgroup$
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044687%2fbaaad-int-0-pi-2-log-bigg-frac2-sin2x2-sin2x-bigg-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$J=int_0^{pi/2}lnleft(frac{2+sin2x}{2-sin2x}right)mathrm dxoverset{2x=t}=frac12 int_0^pi lnleft(frac{1+frac12sin t}{1-frac12sin t}right)mathrm dt=int_0^frac{pi}{2}lnleft(frac{1+frac12sin x}{1-frac12sin x }right)mathrm dx$$
$${lnleft(frac{1+ysin x}{1-ysin x}right)+c=2intfrac{sin x}{1-y^2sin^2x}dy}Rightarrowlnleft(frac{1+frac12sin t}{1-frac12sin t }right)=2int_0^frac{1}{2}frac{sin x}{1-y^2sin^2x}dy tag1$$
By Fubini's theorem we may interchange the order of the integrals and using $(1)$ we get: $$J=2int_0^frac{pi}{2}int_0^frac12 frac{sin x}{1-y^2sin^2x}dydx=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{1-y^2sin^2x}dxdy=$$
$$=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{y^2cos^2x +1-y^2} dxdy=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{yx}{sqrt{1-y^2}}right)bigg|_0^1 dy=$$
$$=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{y}{sqrt{1-y^2}}right)dyoverset{y=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx=$$
$$=2int_0^{frac{pi}{6}} x left(lnleft(tan frac{x}{2}right)right)'dx=2x lnleft(tan frac{x}{2}right)bigg|_0^{frac{pi}{6}} -2{int_0^{frac{pi}{6}} lnleft(tan frac{x}{2}right)dx}=$$
$$overset{frac{x}{2}=t}=frac{pi}{3}ln(2-sqrt 3) -4int_0^frac{pi}{12}ln (tan t)dt=-frac{pi}{3}ln(2+sqrt 3) +frac{8}{3}G$$ $G$ is the Catalan's constant and for the last integral see here.
Also note that you should have: $$2I=frac{pi^2}{4sqrt 3}- int_0^inftyfrac{(x^2-1)arctan x}{x^4+x^2+1}dx=frac{pi^2}{4sqrt 3}-frac12underset{=J}{int_0^infty lnbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{dx}{1+x^2}}$$
As an alternative employ Feynman's trick for $,displaystyle{I(a)=int_0^frac{pi}{2}lnleft(frac{1+asin x}{1-asin x}right)dt},$ to get:
$$I'(a)=int_0^frac{pi}{2} left(frac{sin x}{1+asin x}+frac{sin x}{1-asin x}right)dx =2int_0^frac{pi}{2} frac{sin x}{1-a^2sin^2 x}dx=$$
$$=2int_0^frac{pi}{2} frac{sin x}{a^2cos^2 x + left(sqrt{1-a^2}right)^2}dx=frac{2}{a^2}int_0^1 frac{d(cos x)}{cos^2x +left(frac{sqrt{1-a^2}}{a}right)^2}=$$
$$=frac{2a}{a^2sqrt{1-a^2}}arctanleft(frac{ax}{sqrt{1-a^2}}right)bigg|_0^1=frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)$$
$$I(0)=0 Rightarrow J=I(tfrac12)=int_0^frac12 frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)overset{a=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx$$
And the rest part is found above.
$endgroup$
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
|
show 2 more comments
$begingroup$
$$J=int_0^{pi/2}lnleft(frac{2+sin2x}{2-sin2x}right)mathrm dxoverset{2x=t}=frac12 int_0^pi lnleft(frac{1+frac12sin t}{1-frac12sin t}right)mathrm dt=int_0^frac{pi}{2}lnleft(frac{1+frac12sin x}{1-frac12sin x }right)mathrm dx$$
$${lnleft(frac{1+ysin x}{1-ysin x}right)+c=2intfrac{sin x}{1-y^2sin^2x}dy}Rightarrowlnleft(frac{1+frac12sin t}{1-frac12sin t }right)=2int_0^frac{1}{2}frac{sin x}{1-y^2sin^2x}dy tag1$$
By Fubini's theorem we may interchange the order of the integrals and using $(1)$ we get: $$J=2int_0^frac{pi}{2}int_0^frac12 frac{sin x}{1-y^2sin^2x}dydx=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{1-y^2sin^2x}dxdy=$$
$$=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{y^2cos^2x +1-y^2} dxdy=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{yx}{sqrt{1-y^2}}right)bigg|_0^1 dy=$$
$$=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{y}{sqrt{1-y^2}}right)dyoverset{y=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx=$$
$$=2int_0^{frac{pi}{6}} x left(lnleft(tan frac{x}{2}right)right)'dx=2x lnleft(tan frac{x}{2}right)bigg|_0^{frac{pi}{6}} -2{int_0^{frac{pi}{6}} lnleft(tan frac{x}{2}right)dx}=$$
$$overset{frac{x}{2}=t}=frac{pi}{3}ln(2-sqrt 3) -4int_0^frac{pi}{12}ln (tan t)dt=-frac{pi}{3}ln(2+sqrt 3) +frac{8}{3}G$$ $G$ is the Catalan's constant and for the last integral see here.
Also note that you should have: $$2I=frac{pi^2}{4sqrt 3}- int_0^inftyfrac{(x^2-1)arctan x}{x^4+x^2+1}dx=frac{pi^2}{4sqrt 3}-frac12underset{=J}{int_0^infty lnbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{dx}{1+x^2}}$$
As an alternative employ Feynman's trick for $,displaystyle{I(a)=int_0^frac{pi}{2}lnleft(frac{1+asin x}{1-asin x}right)dt},$ to get:
$$I'(a)=int_0^frac{pi}{2} left(frac{sin x}{1+asin x}+frac{sin x}{1-asin x}right)dx =2int_0^frac{pi}{2} frac{sin x}{1-a^2sin^2 x}dx=$$
$$=2int_0^frac{pi}{2} frac{sin x}{a^2cos^2 x + left(sqrt{1-a^2}right)^2}dx=frac{2}{a^2}int_0^1 frac{d(cos x)}{cos^2x +left(frac{sqrt{1-a^2}}{a}right)^2}=$$
$$=frac{2a}{a^2sqrt{1-a^2}}arctanleft(frac{ax}{sqrt{1-a^2}}right)bigg|_0^1=frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)$$
$$I(0)=0 Rightarrow J=I(tfrac12)=int_0^frac12 frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)overset{a=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx$$
And the rest part is found above.
$endgroup$
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
|
show 2 more comments
$begingroup$
$$J=int_0^{pi/2}lnleft(frac{2+sin2x}{2-sin2x}right)mathrm dxoverset{2x=t}=frac12 int_0^pi lnleft(frac{1+frac12sin t}{1-frac12sin t}right)mathrm dt=int_0^frac{pi}{2}lnleft(frac{1+frac12sin x}{1-frac12sin x }right)mathrm dx$$
$${lnleft(frac{1+ysin x}{1-ysin x}right)+c=2intfrac{sin x}{1-y^2sin^2x}dy}Rightarrowlnleft(frac{1+frac12sin t}{1-frac12sin t }right)=2int_0^frac{1}{2}frac{sin x}{1-y^2sin^2x}dy tag1$$
By Fubini's theorem we may interchange the order of the integrals and using $(1)$ we get: $$J=2int_0^frac{pi}{2}int_0^frac12 frac{sin x}{1-y^2sin^2x}dydx=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{1-y^2sin^2x}dxdy=$$
$$=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{y^2cos^2x +1-y^2} dxdy=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{yx}{sqrt{1-y^2}}right)bigg|_0^1 dy=$$
$$=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{y}{sqrt{1-y^2}}right)dyoverset{y=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx=$$
$$=2int_0^{frac{pi}{6}} x left(lnleft(tan frac{x}{2}right)right)'dx=2x lnleft(tan frac{x}{2}right)bigg|_0^{frac{pi}{6}} -2{int_0^{frac{pi}{6}} lnleft(tan frac{x}{2}right)dx}=$$
$$overset{frac{x}{2}=t}=frac{pi}{3}ln(2-sqrt 3) -4int_0^frac{pi}{12}ln (tan t)dt=-frac{pi}{3}ln(2+sqrt 3) +frac{8}{3}G$$ $G$ is the Catalan's constant and for the last integral see here.
Also note that you should have: $$2I=frac{pi^2}{4sqrt 3}- int_0^inftyfrac{(x^2-1)arctan x}{x^4+x^2+1}dx=frac{pi^2}{4sqrt 3}-frac12underset{=J}{int_0^infty lnbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{dx}{1+x^2}}$$
As an alternative employ Feynman's trick for $,displaystyle{I(a)=int_0^frac{pi}{2}lnleft(frac{1+asin x}{1-asin x}right)dt},$ to get:
$$I'(a)=int_0^frac{pi}{2} left(frac{sin x}{1+asin x}+frac{sin x}{1-asin x}right)dx =2int_0^frac{pi}{2} frac{sin x}{1-a^2sin^2 x}dx=$$
$$=2int_0^frac{pi}{2} frac{sin x}{a^2cos^2 x + left(sqrt{1-a^2}right)^2}dx=frac{2}{a^2}int_0^1 frac{d(cos x)}{cos^2x +left(frac{sqrt{1-a^2}}{a}right)^2}=$$
$$=frac{2a}{a^2sqrt{1-a^2}}arctanleft(frac{ax}{sqrt{1-a^2}}right)bigg|_0^1=frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)$$
$$I(0)=0 Rightarrow J=I(tfrac12)=int_0^frac12 frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)overset{a=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx$$
And the rest part is found above.
$endgroup$
$$J=int_0^{pi/2}lnleft(frac{2+sin2x}{2-sin2x}right)mathrm dxoverset{2x=t}=frac12 int_0^pi lnleft(frac{1+frac12sin t}{1-frac12sin t}right)mathrm dt=int_0^frac{pi}{2}lnleft(frac{1+frac12sin x}{1-frac12sin x }right)mathrm dx$$
$${lnleft(frac{1+ysin x}{1-ysin x}right)+c=2intfrac{sin x}{1-y^2sin^2x}dy}Rightarrowlnleft(frac{1+frac12sin t}{1-frac12sin t }right)=2int_0^frac{1}{2}frac{sin x}{1-y^2sin^2x}dy tag1$$
By Fubini's theorem we may interchange the order of the integrals and using $(1)$ we get: $$J=2int_0^frac{pi}{2}int_0^frac12 frac{sin x}{1-y^2sin^2x}dydx=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{1-y^2sin^2x}dxdy=$$
$$=2int_0^frac12int_0^frac{pi}{2} frac{sin x}{y^2cos^2x +1-y^2} dxdy=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{yx}{sqrt{1-y^2}}right)bigg|_0^1 dy=$$
$$=2int_0^frac12frac{1}{ysqrt{1-y^2}}arctanleft(frac{y}{sqrt{1-y^2}}right)dyoverset{y=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx=$$
$$=2int_0^{frac{pi}{6}} x left(lnleft(tan frac{x}{2}right)right)'dx=2x lnleft(tan frac{x}{2}right)bigg|_0^{frac{pi}{6}} -2{int_0^{frac{pi}{6}} lnleft(tan frac{x}{2}right)dx}=$$
$$overset{frac{x}{2}=t}=frac{pi}{3}ln(2-sqrt 3) -4int_0^frac{pi}{12}ln (tan t)dt=-frac{pi}{3}ln(2+sqrt 3) +frac{8}{3}G$$ $G$ is the Catalan's constant and for the last integral see here.
Also note that you should have: $$2I=frac{pi^2}{4sqrt 3}- int_0^inftyfrac{(x^2-1)arctan x}{x^4+x^2+1}dx=frac{pi^2}{4sqrt 3}-frac12underset{=J}{int_0^infty lnbigg(frac{x^2-x+1}{x^2+x+1}bigg)frac{dx}{1+x^2}}$$
As an alternative employ Feynman's trick for $,displaystyle{I(a)=int_0^frac{pi}{2}lnleft(frac{1+asin x}{1-asin x}right)dt},$ to get:
$$I'(a)=int_0^frac{pi}{2} left(frac{sin x}{1+asin x}+frac{sin x}{1-asin x}right)dx =2int_0^frac{pi}{2} frac{sin x}{1-a^2sin^2 x}dx=$$
$$=2int_0^frac{pi}{2} frac{sin x}{a^2cos^2 x + left(sqrt{1-a^2}right)^2}dx=frac{2}{a^2}int_0^1 frac{d(cos x)}{cos^2x +left(frac{sqrt{1-a^2}}{a}right)^2}=$$
$$=frac{2a}{a^2sqrt{1-a^2}}arctanleft(frac{ax}{sqrt{1-a^2}}right)bigg|_0^1=frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)$$
$$I(0)=0 Rightarrow J=I(tfrac12)=int_0^frac12 frac{2}{asqrt{1-a^2}}arctanleft(frac{a}{sqrt{1-a^2}}right)overset{a=sin x}=2int_0^frac{pi}{6}frac{x}{sin x}dx$$
And the rest part is found above.
edited Dec 23 '18 at 19:30
answered Dec 18 '18 at 8:05
ZackyZacky
7,76011061
7,76011061
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
|
show 2 more comments
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
1
1
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
$begingroup$
Shouldn't you give justification for differentiating under the integral?
$endgroup$
– user21820
Dec 18 '18 at 9:23
3
3
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
That is just Feynman's trick, or differentiating under the integral sign. I don't understand what I should justify at all. See here for example for more: medium.com/dialogue-and-discourse/… and here: brilliant.org/wiki/integration-tricks/…
$endgroup$
– Zacky
Dec 18 '18 at 9:37
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
$begingroup$
It is not always valid, and the fact that you don't understand the precise conditions under which you can use it means that you shouldn't be using it! Both your sources are mathematically deficit for the same reason.
$endgroup$
– user21820
Dec 18 '18 at 9:49
2
2
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
$begingroup$
Sure. Please read this pdf by Keith Conrad for counter-examples and a full mathematical explanation.
$endgroup$
– user21820
Dec 18 '18 at 9:56
2
2
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
$begingroup$
Legit!! What a neat solution! Thanks Zacky!
$endgroup$
– clathratus
Dec 18 '18 at 19:04
|
show 2 more comments
$begingroup$
A Possible way: Consider
$$I(a)=int_{0}^{+infty}frac{arctan(ax)}{1+x^2+x^4} dx$$
and
$$I'(a)=int_{0}^{+infty}frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=int_{0}^{+infty}frac{1}{(1+y+y^2)(1+a^2y)}dx$$
and
$$frac{1}{(1+y+y^2)(1+a^2y)}= frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$
we can also calculate $I'(a)$ by complex integration (if you've learned that).
Thanks to Dylan for his advice.
$endgroup$
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
add a comment |
$begingroup$
A Possible way: Consider
$$I(a)=int_{0}^{+infty}frac{arctan(ax)}{1+x^2+x^4} dx$$
and
$$I'(a)=int_{0}^{+infty}frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=int_{0}^{+infty}frac{1}{(1+y+y^2)(1+a^2y)}dx$$
and
$$frac{1}{(1+y+y^2)(1+a^2y)}= frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$
we can also calculate $I'(a)$ by complex integration (if you've learned that).
Thanks to Dylan for his advice.
$endgroup$
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
add a comment |
$begingroup$
A Possible way: Consider
$$I(a)=int_{0}^{+infty}frac{arctan(ax)}{1+x^2+x^4} dx$$
and
$$I'(a)=int_{0}^{+infty}frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=int_{0}^{+infty}frac{1}{(1+y+y^2)(1+a^2y)}dx$$
and
$$frac{1}{(1+y+y^2)(1+a^2y)}= frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$
we can also calculate $I'(a)$ by complex integration (if you've learned that).
Thanks to Dylan for his advice.
$endgroup$
A Possible way: Consider
$$I(a)=int_{0}^{+infty}frac{arctan(ax)}{1+x^2+x^4} dx$$
and
$$I'(a)=int_{0}^{+infty}frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=int_{0}^{+infty}frac{1}{(1+y+y^2)(1+a^2y)}dx$$
and
$$frac{1}{(1+y+y^2)(1+a^2y)}= frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$
we can also calculate $I'(a)$ by complex integration (if you've learned that).
Thanks to Dylan for his advice.
edited Dec 18 '18 at 3:38
answered Dec 18 '18 at 2:57
LauLau
515315
515315
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
add a comment |
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
Instead of doing partial fractions wrt $x$, you might consider substituting $u=x^2$ first
$endgroup$
– Dylan
Dec 18 '18 at 3:07
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
And it is still not so easy. I think there may be a more clever way to solve it.
$endgroup$
– Lau
Dec 18 '18 at 3:15
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
I meant the first integration. $$frac12 int_0^infty frac{1}{(1+u+u^2)(1+a^2u)} du$$ and then do partial fractions?
$endgroup$
– Dylan
Dec 18 '18 at 3:31
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
$begingroup$
@Dylan You're right.
$endgroup$
– Lau
Dec 18 '18 at 3:34
1
1
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
$begingroup$
If you have to know complex analysis in order to do complex integration, then I can't do it. If complex integration is just normal integration but with a few $i$'s here and there, then I can do that.
$endgroup$
– clathratus
Dec 18 '18 at 5:03
add a comment |
$begingroup$
Result
I find that the integral has a closed form given by
$$i = intlimits_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx = frac{1}{3} left(8 C-pi log left(2+sqrt{3}right)right) simeq 1.06346tag{1}$$
where
$$C = sum _{k=1}^{infty } frac{(-1)^{k+1}}{(2 k-1)^2} simeq 0.915966$$
is Catalan's constant.
Heuristic derivation
Notice trivially that because of the symmtery of the integrand the integral can be written as twice the integral from $0$ to $frac{pi}{4}$ which we shall utilize in what follows.
The basic idea is the series expansion
$$log left(frac{1+z}{1-z}right)=2tanh ^{-1}(z) = 2 sum _{k=1}^{infty } frac{z^{2 k-1}}{2 k-1},|z|<1 tag{2}$$
The integral is then to be done over the odd powers of the $sin$ with the result
$$int_0^{frac{pi }{4}} sin ^{2 k-1}(2 x) , dx = frac{sqrt{pi } Gamma (k)}{4 Gamma left(k+frac{1}{2}right)}tag{3}$$
Assembling the pieces the sum to be taken to represent $i$ becomes
$$i_s = sum _{k=1}^{infty } frac{sqrt{pi } Gamma (k)}{(2 k-1) 2^{2 k-1} Gamma left(k+frac{1}{2}right)}tag{4}$$
and this sum is immediately computed by Mathematica to give the compact result $(1)$.
Let us make the sum more transparent using the chain
$$frac{sqrt{pi } Gamma (k)}{Gamma left(k+frac{1}{2}right)}=Bleft(frac{1}{2},kright)=int_0^1 frac{t^{k-1}}{sqrt{1-t}} , dttag{5}$$
and doing the sum under the integral
$$sum _{k=1}^{infty } frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t}}tag{6}$$
leads finally to the integral
$$int_0^1 frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t} sqrt{1-t}} , dttag{7}$$
for which Mathematica again quickly gives (1).
But there must be a shorter way ... yes, it is, substituting $sin (2 x)=sqrt{t}$ in the original integral gives (7) directly.
$endgroup$
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
add a comment |
$begingroup$
Result
I find that the integral has a closed form given by
$$i = intlimits_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx = frac{1}{3} left(8 C-pi log left(2+sqrt{3}right)right) simeq 1.06346tag{1}$$
where
$$C = sum _{k=1}^{infty } frac{(-1)^{k+1}}{(2 k-1)^2} simeq 0.915966$$
is Catalan's constant.
Heuristic derivation
Notice trivially that because of the symmtery of the integrand the integral can be written as twice the integral from $0$ to $frac{pi}{4}$ which we shall utilize in what follows.
The basic idea is the series expansion
$$log left(frac{1+z}{1-z}right)=2tanh ^{-1}(z) = 2 sum _{k=1}^{infty } frac{z^{2 k-1}}{2 k-1},|z|<1 tag{2}$$
The integral is then to be done over the odd powers of the $sin$ with the result
$$int_0^{frac{pi }{4}} sin ^{2 k-1}(2 x) , dx = frac{sqrt{pi } Gamma (k)}{4 Gamma left(k+frac{1}{2}right)}tag{3}$$
Assembling the pieces the sum to be taken to represent $i$ becomes
$$i_s = sum _{k=1}^{infty } frac{sqrt{pi } Gamma (k)}{(2 k-1) 2^{2 k-1} Gamma left(k+frac{1}{2}right)}tag{4}$$
and this sum is immediately computed by Mathematica to give the compact result $(1)$.
Let us make the sum more transparent using the chain
$$frac{sqrt{pi } Gamma (k)}{Gamma left(k+frac{1}{2}right)}=Bleft(frac{1}{2},kright)=int_0^1 frac{t^{k-1}}{sqrt{1-t}} , dttag{5}$$
and doing the sum under the integral
$$sum _{k=1}^{infty } frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t}}tag{6}$$
leads finally to the integral
$$int_0^1 frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t} sqrt{1-t}} , dttag{7}$$
for which Mathematica again quickly gives (1).
But there must be a shorter way ... yes, it is, substituting $sin (2 x)=sqrt{t}$ in the original integral gives (7) directly.
$endgroup$
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
add a comment |
$begingroup$
Result
I find that the integral has a closed form given by
$$i = intlimits_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx = frac{1}{3} left(8 C-pi log left(2+sqrt{3}right)right) simeq 1.06346tag{1}$$
where
$$C = sum _{k=1}^{infty } frac{(-1)^{k+1}}{(2 k-1)^2} simeq 0.915966$$
is Catalan's constant.
Heuristic derivation
Notice trivially that because of the symmtery of the integrand the integral can be written as twice the integral from $0$ to $frac{pi}{4}$ which we shall utilize in what follows.
The basic idea is the series expansion
$$log left(frac{1+z}{1-z}right)=2tanh ^{-1}(z) = 2 sum _{k=1}^{infty } frac{z^{2 k-1}}{2 k-1},|z|<1 tag{2}$$
The integral is then to be done over the odd powers of the $sin$ with the result
$$int_0^{frac{pi }{4}} sin ^{2 k-1}(2 x) , dx = frac{sqrt{pi } Gamma (k)}{4 Gamma left(k+frac{1}{2}right)}tag{3}$$
Assembling the pieces the sum to be taken to represent $i$ becomes
$$i_s = sum _{k=1}^{infty } frac{sqrt{pi } Gamma (k)}{(2 k-1) 2^{2 k-1} Gamma left(k+frac{1}{2}right)}tag{4}$$
and this sum is immediately computed by Mathematica to give the compact result $(1)$.
Let us make the sum more transparent using the chain
$$frac{sqrt{pi } Gamma (k)}{Gamma left(k+frac{1}{2}right)}=Bleft(frac{1}{2},kright)=int_0^1 frac{t^{k-1}}{sqrt{1-t}} , dttag{5}$$
and doing the sum under the integral
$$sum _{k=1}^{infty } frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t}}tag{6}$$
leads finally to the integral
$$int_0^1 frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t} sqrt{1-t}} , dttag{7}$$
for which Mathematica again quickly gives (1).
But there must be a shorter way ... yes, it is, substituting $sin (2 x)=sqrt{t}$ in the original integral gives (7) directly.
$endgroup$
Result
I find that the integral has a closed form given by
$$i = intlimits_0^{pi/2}logbigg(frac{2+sin2x}{2-sin2x}bigg)mathrm dx = frac{1}{3} left(8 C-pi log left(2+sqrt{3}right)right) simeq 1.06346tag{1}$$
where
$$C = sum _{k=1}^{infty } frac{(-1)^{k+1}}{(2 k-1)^2} simeq 0.915966$$
is Catalan's constant.
Heuristic derivation
Notice trivially that because of the symmtery of the integrand the integral can be written as twice the integral from $0$ to $frac{pi}{4}$ which we shall utilize in what follows.
The basic idea is the series expansion
$$log left(frac{1+z}{1-z}right)=2tanh ^{-1}(z) = 2 sum _{k=1}^{infty } frac{z^{2 k-1}}{2 k-1},|z|<1 tag{2}$$
The integral is then to be done over the odd powers of the $sin$ with the result
$$int_0^{frac{pi }{4}} sin ^{2 k-1}(2 x) , dx = frac{sqrt{pi } Gamma (k)}{4 Gamma left(k+frac{1}{2}right)}tag{3}$$
Assembling the pieces the sum to be taken to represent $i$ becomes
$$i_s = sum _{k=1}^{infty } frac{sqrt{pi } Gamma (k)}{(2 k-1) 2^{2 k-1} Gamma left(k+frac{1}{2}right)}tag{4}$$
and this sum is immediately computed by Mathematica to give the compact result $(1)$.
Let us make the sum more transparent using the chain
$$frac{sqrt{pi } Gamma (k)}{Gamma left(k+frac{1}{2}right)}=Bleft(frac{1}{2},kright)=int_0^1 frac{t^{k-1}}{sqrt{1-t}} , dttag{5}$$
and doing the sum under the integral
$$sum _{k=1}^{infty } frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t}}tag{6}$$
leads finally to the integral
$$int_0^1 frac{tanh ^{-1}left(frac{sqrt{t}}{2}right)}{sqrt{t} sqrt{1-t}} , dttag{7}$$
for which Mathematica again quickly gives (1).
But there must be a shorter way ... yes, it is, substituting $sin (2 x)=sqrt{t}$ in the original integral gives (7) directly.
edited Dec 18 '18 at 15:10
answered Dec 18 '18 at 13:37
Dr. Wolfgang HintzeDr. Wolfgang Hintze
3,735620
3,735620
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
add a comment |
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
$begingroup$
I do truly work better with series. Thank you.
$endgroup$
– clathratus
Dec 18 '18 at 18:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044687%2fbaaad-int-0-pi-2-log-bigg-frac2-sin2x2-sin2x-bigg-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
So $(ak(a))'=frac{pi}{2}log{(2+sin{pi a})}$?
$endgroup$
– Lau
Dec 18 '18 at 2:25
$begingroup$
@Lau Oh... didn't think of that...
$endgroup$
– clathratus
Dec 18 '18 at 2:30
$begingroup$
But I think it may not do any help ... It seems that you will go back to $k(a)$.
$endgroup$
– Lau
Dec 18 '18 at 2:37
$begingroup$
@Lau yeah, $$ak(a)=fracpi2intlog(2+sinpi a)mathrm{d}a$$ which is fishily similar to $k(a)$.
$endgroup$
– clathratus
Dec 18 '18 at 2:39
1
$begingroup$
Here's an idea: when defining $k(a)$, take $log(a+sin(2x))$ instead.
$endgroup$
– Nastar
Dec 18 '18 at 3:17