Compute the limit or show it doesn't exist: $lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n})$
$begingroup$
Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$
I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.
calculus limits trigonometry
$endgroup$
add a comment |
$begingroup$
Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$
I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.
calculus limits trigonometry
$endgroup$
2
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
1
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10
add a comment |
$begingroup$
Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$
I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.
calculus limits trigonometry
$endgroup$
Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$
I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.
calculus limits trigonometry
calculus limits trigonometry
edited Dec 18 '18 at 4:24
tatan
5,79762760
5,79762760
asked Dec 18 '18 at 4:02
J. LastinJ. Lastin
1257
1257
2
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
1
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10
add a comment |
2
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
1
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10
2
2
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
1
1
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$
Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$
$endgroup$
add a comment |
$begingroup$
$sin x < x $
$|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$
$endgroup$
add a comment |
$begingroup$
$$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$
For real $y,-1lecos yle1$
For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$
$endgroup$
add a comment |
$begingroup$
By the mean value theorem,
$|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044759%2fcompute-the-limit-or-show-it-doesnt-exist-lim-n-to-infty-sin-sqrtn1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$
Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$
$endgroup$
add a comment |
$begingroup$
Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$
Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$
$endgroup$
add a comment |
$begingroup$
Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$
Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$
$endgroup$
Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$
Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$
answered Dec 18 '18 at 4:18
TravisTravis
63.3k768150
63.3k768150
add a comment |
add a comment |
$begingroup$
$sin x < x $
$|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$
$endgroup$
add a comment |
$begingroup$
$sin x < x $
$|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$
$endgroup$
add a comment |
$begingroup$
$sin x < x $
$|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$
$endgroup$
$sin x < x $
$|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$
answered Dec 18 '18 at 4:16
kayushkayush
2,215826
2,215826
add a comment |
add a comment |
$begingroup$
$$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$
For real $y,-1lecos yle1$
For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$
$endgroup$
add a comment |
$begingroup$
$$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$
For real $y,-1lecos yle1$
For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$
$endgroup$
add a comment |
$begingroup$
$$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$
For real $y,-1lecos yle1$
For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$
$endgroup$
$$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$
For real $y,-1lecos yle1$
For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$
answered Dec 18 '18 at 4:43
lab bhattacharjeelab bhattacharjee
227k15158275
227k15158275
add a comment |
add a comment |
$begingroup$
By the mean value theorem,
$|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.
$endgroup$
add a comment |
$begingroup$
By the mean value theorem,
$|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.
$endgroup$
add a comment |
$begingroup$
By the mean value theorem,
$|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.
$endgroup$
By the mean value theorem,
$|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.
answered Dec 18 '18 at 4:53
Mustafa SaidMustafa Said
3,0511913
3,0511913
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044759%2fcompute-the-limit-or-show-it-doesnt-exist-lim-n-to-infty-sin-sqrtn1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05
1
$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10