Integration with $e$
$begingroup$
What are the steps in this integration :
$$
int4e^{t(u-4)}dt = frac{-4}{u-4}e^{t(u-4)}
$$
I've calculated simpler integration formulas such as
$$
int x^2dt = frac{x^3}{3}
$$
but I'm unsure how integral above is calculated as there is an $e$ involved.
calculus integration derivatives
$endgroup$
add a comment |
$begingroup$
What are the steps in this integration :
$$
int4e^{t(u-4)}dt = frac{-4}{u-4}e^{t(u-4)}
$$
I've calculated simpler integration formulas such as
$$
int x^2dt = frac{x^3}{3}
$$
but I'm unsure how integral above is calculated as there is an $e$ involved.
calculus integration derivatives
$endgroup$
3
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42
add a comment |
$begingroup$
What are the steps in this integration :
$$
int4e^{t(u-4)}dt = frac{-4}{u-4}e^{t(u-4)}
$$
I've calculated simpler integration formulas such as
$$
int x^2dt = frac{x^3}{3}
$$
but I'm unsure how integral above is calculated as there is an $e$ involved.
calculus integration derivatives
$endgroup$
What are the steps in this integration :
$$
int4e^{t(u-4)}dt = frac{-4}{u-4}e^{t(u-4)}
$$
I've calculated simpler integration formulas such as
$$
int x^2dt = frac{x^3}{3}
$$
but I'm unsure how integral above is calculated as there is an $e$ involved.
calculus integration derivatives
calculus integration derivatives
asked Dec 16 '18 at 15:37
blue-skyblue-sky
1,03311322
1,03311322
3
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42
add a comment |
3
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42
3
3
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$I=int4e^{(u-4)t}dt=4int e^{(u-4)t}dt$$
Substitute $$w=(u-4)t\Rightarrow dw=(u-4)dt\Rightarrow frac{dw}{u-4}=dt$$
Hence $$I=4int e^{w}frac{dw}{u-4}=frac{4}{u-4}int e^wdw$$
Since $frac{d}{dx}e^x=e^x$,
$$I=frac{4}{u-4}e^w+C$$
Re-substitute:
$$I=frac{4}{u-4}e^{(u-4)t}+C$$
$endgroup$
add a comment |
$begingroup$
Since $int e^t,mathrm dt=e^t$, $int e^{at},mathrm dt=dfrac{e^{at}}a$.
$endgroup$
add a comment |
$begingroup$
Substituting $$m=t(u-4)$$ then you will get $$dm=(u-4)dt$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042737%2fintegration-with-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$I=int4e^{(u-4)t}dt=4int e^{(u-4)t}dt$$
Substitute $$w=(u-4)t\Rightarrow dw=(u-4)dt\Rightarrow frac{dw}{u-4}=dt$$
Hence $$I=4int e^{w}frac{dw}{u-4}=frac{4}{u-4}int e^wdw$$
Since $frac{d}{dx}e^x=e^x$,
$$I=frac{4}{u-4}e^w+C$$
Re-substitute:
$$I=frac{4}{u-4}e^{(u-4)t}+C$$
$endgroup$
add a comment |
$begingroup$
$$I=int4e^{(u-4)t}dt=4int e^{(u-4)t}dt$$
Substitute $$w=(u-4)t\Rightarrow dw=(u-4)dt\Rightarrow frac{dw}{u-4}=dt$$
Hence $$I=4int e^{w}frac{dw}{u-4}=frac{4}{u-4}int e^wdw$$
Since $frac{d}{dx}e^x=e^x$,
$$I=frac{4}{u-4}e^w+C$$
Re-substitute:
$$I=frac{4}{u-4}e^{(u-4)t}+C$$
$endgroup$
add a comment |
$begingroup$
$$I=int4e^{(u-4)t}dt=4int e^{(u-4)t}dt$$
Substitute $$w=(u-4)t\Rightarrow dw=(u-4)dt\Rightarrow frac{dw}{u-4}=dt$$
Hence $$I=4int e^{w}frac{dw}{u-4}=frac{4}{u-4}int e^wdw$$
Since $frac{d}{dx}e^x=e^x$,
$$I=frac{4}{u-4}e^w+C$$
Re-substitute:
$$I=frac{4}{u-4}e^{(u-4)t}+C$$
$endgroup$
$$I=int4e^{(u-4)t}dt=4int e^{(u-4)t}dt$$
Substitute $$w=(u-4)t\Rightarrow dw=(u-4)dt\Rightarrow frac{dw}{u-4}=dt$$
Hence $$I=4int e^{w}frac{dw}{u-4}=frac{4}{u-4}int e^wdw$$
Since $frac{d}{dx}e^x=e^x$,
$$I=frac{4}{u-4}e^w+C$$
Re-substitute:
$$I=frac{4}{u-4}e^{(u-4)t}+C$$
answered Dec 16 '18 at 20:04
clathratusclathratus
4,8611338
4,8611338
add a comment |
add a comment |
$begingroup$
Since $int e^t,mathrm dt=e^t$, $int e^{at},mathrm dt=dfrac{e^{at}}a$.
$endgroup$
add a comment |
$begingroup$
Since $int e^t,mathrm dt=e^t$, $int e^{at},mathrm dt=dfrac{e^{at}}a$.
$endgroup$
add a comment |
$begingroup$
Since $int e^t,mathrm dt=e^t$, $int e^{at},mathrm dt=dfrac{e^{at}}a$.
$endgroup$
Since $int e^t,mathrm dt=e^t$, $int e^{at},mathrm dt=dfrac{e^{at}}a$.
answered Dec 16 '18 at 15:40
José Carlos SantosJosé Carlos Santos
166k22132235
166k22132235
add a comment |
add a comment |
$begingroup$
Substituting $$m=t(u-4)$$ then you will get $$dm=(u-4)dt$$
$endgroup$
add a comment |
$begingroup$
Substituting $$m=t(u-4)$$ then you will get $$dm=(u-4)dt$$
$endgroup$
add a comment |
$begingroup$
Substituting $$m=t(u-4)$$ then you will get $$dm=(u-4)dt$$
$endgroup$
Substituting $$m=t(u-4)$$ then you will get $$dm=(u-4)dt$$
answered Dec 16 '18 at 15:41
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77.2k42866
77.2k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042737%2fintegration-with-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
As @Jose's answer shows, the formula you've got on the right-hand side is incorrect --- there's an extra minus-sign. So we can't show you the steps that lead to an incorrect answer.
$endgroup$
– John Hughes
Dec 16 '18 at 15:42