Simple couter-example of preservation of Jordan-Chevalley decomposition











up vote
2
down vote

favorite












I was going through chapter 9 of Fulton and Harris, as I am teaching the course, and ran across the example of the Lie algebra $mathbb{C}$, with the following representation:



begin{equation}
rho: t mapsto begin{pmatrix} t & t \ 0 & 0 end{pmatrix}
end{equation}



The book presents this as an example where the matrix is ``neither diagonalizable nor nilpotent'', and where neither the semisimple and nilpotent parts will be in the image of $rho$.
The point they want to showcase is how the semisimplicity of the Lie algebra is crucial.



I'm having trouble with this example, as the matrix in question is already semisimple as it stands.



Can anyone `fix' this example, or show me another neat representation of $mathbb{C}$ where J.C. decomposition is not preserved?










share|cite|improve this question







New contributor




Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    2
    down vote

    favorite












    I was going through chapter 9 of Fulton and Harris, as I am teaching the course, and ran across the example of the Lie algebra $mathbb{C}$, with the following representation:



    begin{equation}
    rho: t mapsto begin{pmatrix} t & t \ 0 & 0 end{pmatrix}
    end{equation}



    The book presents this as an example where the matrix is ``neither diagonalizable nor nilpotent'', and where neither the semisimple and nilpotent parts will be in the image of $rho$.
    The point they want to showcase is how the semisimplicity of the Lie algebra is crucial.



    I'm having trouble with this example, as the matrix in question is already semisimple as it stands.



    Can anyone `fix' this example, or show me another neat representation of $mathbb{C}$ where J.C. decomposition is not preserved?










    share|cite|improve this question







    New contributor




    Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      I was going through chapter 9 of Fulton and Harris, as I am teaching the course, and ran across the example of the Lie algebra $mathbb{C}$, with the following representation:



      begin{equation}
      rho: t mapsto begin{pmatrix} t & t \ 0 & 0 end{pmatrix}
      end{equation}



      The book presents this as an example where the matrix is ``neither diagonalizable nor nilpotent'', and where neither the semisimple and nilpotent parts will be in the image of $rho$.
      The point they want to showcase is how the semisimplicity of the Lie algebra is crucial.



      I'm having trouble with this example, as the matrix in question is already semisimple as it stands.



      Can anyone `fix' this example, or show me another neat representation of $mathbb{C}$ where J.C. decomposition is not preserved?










      share|cite|improve this question







      New contributor




      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I was going through chapter 9 of Fulton and Harris, as I am teaching the course, and ran across the example of the Lie algebra $mathbb{C}$, with the following representation:



      begin{equation}
      rho: t mapsto begin{pmatrix} t & t \ 0 & 0 end{pmatrix}
      end{equation}



      The book presents this as an example where the matrix is ``neither diagonalizable nor nilpotent'', and where neither the semisimple and nilpotent parts will be in the image of $rho$.
      The point they want to showcase is how the semisimplicity of the Lie algebra is crucial.



      I'm having trouble with this example, as the matrix in question is already semisimple as it stands.



      Can anyone `fix' this example, or show me another neat representation of $mathbb{C}$ where J.C. decomposition is not preserved?







      representation-theory






      share|cite|improve this question







      New contributor




      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 16 at 11:51









      Andrés Collinucci

      111




      111




      New contributor




      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Andrés Collinucci is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          Sure, just take the representation $$t mapsto left( begin{matrix} t & t \ 0 & t end{matrix} right)=left( begin{matrix} t & 0 \ 0 & t end{matrix} right)+left( begin{matrix} 0 & t \ 0 & 0 end{matrix} right).$$






          share|cite|improve this answer





















          • Thanks! Nice and simple.
            – Andrés Collinucci
            2 days ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Andrés Collinucci is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001051%2fsimple-couter-example-of-preservation-of-jordan-chevalley-decomposition%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          Sure, just take the representation $$t mapsto left( begin{matrix} t & t \ 0 & t end{matrix} right)=left( begin{matrix} t & 0 \ 0 & t end{matrix} right)+left( begin{matrix} 0 & t \ 0 & 0 end{matrix} right).$$






          share|cite|improve this answer





















          • Thanks! Nice and simple.
            – Andrés Collinucci
            2 days ago















          up vote
          1
          down vote













          Sure, just take the representation $$t mapsto left( begin{matrix} t & t \ 0 & t end{matrix} right)=left( begin{matrix} t & 0 \ 0 & t end{matrix} right)+left( begin{matrix} 0 & t \ 0 & 0 end{matrix} right).$$






          share|cite|improve this answer





















          • Thanks! Nice and simple.
            – Andrés Collinucci
            2 days ago













          up vote
          1
          down vote










          up vote
          1
          down vote









          Sure, just take the representation $$t mapsto left( begin{matrix} t & t \ 0 & t end{matrix} right)=left( begin{matrix} t & 0 \ 0 & t end{matrix} right)+left( begin{matrix} 0 & t \ 0 & 0 end{matrix} right).$$






          share|cite|improve this answer












          Sure, just take the representation $$t mapsto left( begin{matrix} t & t \ 0 & t end{matrix} right)=left( begin{matrix} t & 0 \ 0 & t end{matrix} right)+left( begin{matrix} 0 & t \ 0 & 0 end{matrix} right).$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 16 at 14:37









          Stephen

          10.4k12237




          10.4k12237












          • Thanks! Nice and simple.
            – Andrés Collinucci
            2 days ago


















          • Thanks! Nice and simple.
            – Andrés Collinucci
            2 days ago
















          Thanks! Nice and simple.
          – Andrés Collinucci
          2 days ago




          Thanks! Nice and simple.
          – Andrés Collinucci
          2 days ago










          Andrés Collinucci is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          Andrés Collinucci is a new contributor. Be nice, and check out our Code of Conduct.













          Andrés Collinucci is a new contributor. Be nice, and check out our Code of Conduct.












          Andrés Collinucci is a new contributor. Be nice, and check out our Code of Conduct.















           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001051%2fsimple-couter-example-of-preservation-of-jordan-chevalley-decomposition%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten