An inequality to finalize a proof











up vote
1
down vote

favorite












Related to this Inequality $sumlimits_{cyc}frac{a^3}{13a^2+5b^2}geqfrac{a+b+c}{18}$ and my second answer I have to prove this :




Let $a,b,c$ be real positive numbers then we have : $$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq frac{ab+bc+ca}{18^2}$$




My try :



With Chebychev's inequality we get :



$$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq left(frac{ab+bc+ca}{3}right)left(sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)right) $$



Remains to prove :



$$sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)geq frac{3}{18^2}$$



Or with the right substitution :



$$sum_{cyc}left(frac{x}{13x+5y}right)left(frac{y}{13y+5z}right)geq frac{3}{18^2}$$



And after this I don't know what to do...



Can someone help me ?



Thanks










share|cite|improve this question
























  • It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
    – Martin R
    Nov 23 at 8:58















up vote
1
down vote

favorite












Related to this Inequality $sumlimits_{cyc}frac{a^3}{13a^2+5b^2}geqfrac{a+b+c}{18}$ and my second answer I have to prove this :




Let $a,b,c$ be real positive numbers then we have : $$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq frac{ab+bc+ca}{18^2}$$




My try :



With Chebychev's inequality we get :



$$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq left(frac{ab+bc+ca}{3}right)left(sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)right) $$



Remains to prove :



$$sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)geq frac{3}{18^2}$$



Or with the right substitution :



$$sum_{cyc}left(frac{x}{13x+5y}right)left(frac{y}{13y+5z}right)geq frac{3}{18^2}$$



And after this I don't know what to do...



Can someone help me ?



Thanks










share|cite|improve this question
























  • It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
    – Martin R
    Nov 23 at 8:58













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Related to this Inequality $sumlimits_{cyc}frac{a^3}{13a^2+5b^2}geqfrac{a+b+c}{18}$ and my second answer I have to prove this :




Let $a,b,c$ be real positive numbers then we have : $$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq frac{ab+bc+ca}{18^2}$$




My try :



With Chebychev's inequality we get :



$$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq left(frac{ab+bc+ca}{3}right)left(sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)right) $$



Remains to prove :



$$sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)geq frac{3}{18^2}$$



Or with the right substitution :



$$sum_{cyc}left(frac{x}{13x+5y}right)left(frac{y}{13y+5z}right)geq frac{3}{18^2}$$



And after this I don't know what to do...



Can someone help me ?



Thanks










share|cite|improve this question















Related to this Inequality $sumlimits_{cyc}frac{a^3}{13a^2+5b^2}geqfrac{a+b+c}{18}$ and my second answer I have to prove this :




Let $a,b,c$ be real positive numbers then we have : $$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq frac{ab+bc+ca}{18^2}$$




My try :



With Chebychev's inequality we get :



$$sum_{cyc}left(frac{a^3}{13a^2+5b^2}right)left(frac{b^3}{13b^2+5c^2}right)geq left(frac{ab+bc+ca}{3}right)left(sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)right) $$



Remains to prove :



$$sum_{cyc}left(frac{a^2}{13a^2+5b^2}right)left(frac{b^2}{13b^2+5c^2}right)geq frac{3}{18^2}$$



Or with the right substitution :



$$sum_{cyc}left(frac{x}{13x+5y}right)left(frac{y}{13y+5z}right)geq frac{3}{18^2}$$



And after this I don't know what to do...



Can someone help me ?



Thanks







real-analysis inequality contest-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 8:07









Chinnapparaj R

4,9871825




4,9871825










asked Nov 23 at 8:01









max8128

1,031421




1,031421












  • It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
    – Martin R
    Nov 23 at 8:58


















  • It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
    – Martin R
    Nov 23 at 8:58
















It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
– Martin R
Nov 23 at 8:58




It is false for $(a,b,c)=(0.785, 1.25, 1.861)$, the example given in the referenced question math.stackexchange.com/q/1777075/42969.
– Martin R
Nov 23 at 8:58










1 Answer
1






active

oldest

votes

















up vote
1
down vote













It's wrong. Try $a=b=1$ and $c=2$.



We have:
$$LS=frac{1}{18cdot33}+frac{8}{33cdot57}+frac{8}{57cdot18}=frac{155}{11286}$$ and
$$RS=frac{5}{324}.$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010100%2fan-inequality-to-finalize-a-proof%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    It's wrong. Try $a=b=1$ and $c=2$.



    We have:
    $$LS=frac{1}{18cdot33}+frac{8}{33cdot57}+frac{8}{57cdot18}=frac{155}{11286}$$ and
    $$RS=frac{5}{324}.$$






    share|cite|improve this answer



























      up vote
      1
      down vote













      It's wrong. Try $a=b=1$ and $c=2$.



      We have:
      $$LS=frac{1}{18cdot33}+frac{8}{33cdot57}+frac{8}{57cdot18}=frac{155}{11286}$$ and
      $$RS=frac{5}{324}.$$






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        It's wrong. Try $a=b=1$ and $c=2$.



        We have:
        $$LS=frac{1}{18cdot33}+frac{8}{33cdot57}+frac{8}{57cdot18}=frac{155}{11286}$$ and
        $$RS=frac{5}{324}.$$






        share|cite|improve this answer














        It's wrong. Try $a=b=1$ and $c=2$.



        We have:
        $$LS=frac{1}{18cdot33}+frac{8}{33cdot57}+frac{8}{57cdot18}=frac{155}{11286}$$ and
        $$RS=frac{5}{324}.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 23 at 8:30

























        answered Nov 23 at 8:23









        Michael Rozenberg

        94.9k1588183




        94.9k1588183






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010100%2fan-inequality-to-finalize-a-proof%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten