Calculate this triple integral in cylindrical coordinates, the result is different with triple integral in...












2












$begingroup$


I want to calculate triple integral
begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
(the surface is $z=x^2+y^2$, $0leq zleq 1$.)



In MAPLE, I have to calculate it, and the result is
$$dfrac{2}{3}pi.$$
Now I want calculate the triple integral with cylindrical coordinates, become this
begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
begin{eqnarray}
intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
&=&left[dfrac{1}{4}thetaright]_0^{2pi}\
&=&dfrac{1}{2}pi.
end{eqnarray}

The results are different.
Am I wrong?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    I want to calculate triple integral
    begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
    (the surface is $z=x^2+y^2$, $0leq zleq 1$.)



    In MAPLE, I have to calculate it, and the result is
    $$dfrac{2}{3}pi.$$
    Now I want calculate the triple integral with cylindrical coordinates, become this
    begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
    begin{eqnarray}
    intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
    &=&
    intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
    &=&
    intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
    &=&
    intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
    &=&
    intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
    &=&left[dfrac{1}{4}thetaright]_0^{2pi}\
    &=&dfrac{1}{2}pi.
    end{eqnarray}

    The results are different.
    Am I wrong?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      I want to calculate triple integral
      begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
      (the surface is $z=x^2+y^2$, $0leq zleq 1$.)



      In MAPLE, I have to calculate it, and the result is
      $$dfrac{2}{3}pi.$$
      Now I want calculate the triple integral with cylindrical coordinates, become this
      begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
      begin{eqnarray}
      intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
      &=&
      intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
      &=&
      intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
      &=&
      intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
      &=&
      intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
      &=&left[dfrac{1}{4}thetaright]_0^{2pi}\
      &=&dfrac{1}{2}pi.
      end{eqnarray}

      The results are different.
      Am I wrong?










      share|cite|improve this question









      $endgroup$




      I want to calculate triple integral
      begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
      (the surface is $z=x^2+y^2$, $0leq zleq 1$.)



      In MAPLE, I have to calculate it, and the result is
      $$dfrac{2}{3}pi.$$
      Now I want calculate the triple integral with cylindrical coordinates, become this
      begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
      begin{eqnarray}
      intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
      &=&
      intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
      &=&
      intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
      &=&
      intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
      &=&
      intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
      &=&left[dfrac{1}{4}thetaright]_0^{2pi}\
      &=&dfrac{1}{2}pi.
      end{eqnarray}

      The results are different.
      Am I wrong?







      integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 3:21









      Ongky Denny WijayaOngky Denny Wijaya

      3078




      3078






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
          Hence, your integral should become:
          $$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            why theta = 0 into theta =1?
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 4:56










          • $begingroup$
            @ of course typo. edited
            $endgroup$
            – dezdichado
            Dec 11 '18 at 5:03






          • 1




            $begingroup$
            OK, I'm wrong in x^2+y^2, Now the answer is correct.
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 5:50











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034844%2fcalculate-this-triple-integral-in-cylindrical-coordinates-the-result-is-differe%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
          Hence, your integral should become:
          $$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            why theta = 0 into theta =1?
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 4:56










          • $begingroup$
            @ of course typo. edited
            $endgroup$
            – dezdichado
            Dec 11 '18 at 5:03






          • 1




            $begingroup$
            OK, I'm wrong in x^2+y^2, Now the answer is correct.
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 5:50
















          2












          $begingroup$

          In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
          Hence, your integral should become:
          $$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            why theta = 0 into theta =1?
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 4:56










          • $begingroup$
            @ of course typo. edited
            $endgroup$
            – dezdichado
            Dec 11 '18 at 5:03






          • 1




            $begingroup$
            OK, I'm wrong in x^2+y^2, Now the answer is correct.
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 5:50














          2












          2








          2





          $begingroup$

          In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
          Hence, your integral should become:
          $$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$






          share|cite|improve this answer











          $endgroup$



          In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
          Hence, your integral should become:
          $$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 11 '18 at 5:03

























          answered Dec 11 '18 at 4:50









          dezdichadodezdichado

          6,3811929




          6,3811929












          • $begingroup$
            why theta = 0 into theta =1?
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 4:56










          • $begingroup$
            @ of course typo. edited
            $endgroup$
            – dezdichado
            Dec 11 '18 at 5:03






          • 1




            $begingroup$
            OK, I'm wrong in x^2+y^2, Now the answer is correct.
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 5:50


















          • $begingroup$
            why theta = 0 into theta =1?
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 4:56










          • $begingroup$
            @ of course typo. edited
            $endgroup$
            – dezdichado
            Dec 11 '18 at 5:03






          • 1




            $begingroup$
            OK, I'm wrong in x^2+y^2, Now the answer is correct.
            $endgroup$
            – Ongky Denny Wijaya
            Dec 11 '18 at 5:50
















          $begingroup$
          why theta = 0 into theta =1?
          $endgroup$
          – Ongky Denny Wijaya
          Dec 11 '18 at 4:56




          $begingroup$
          why theta = 0 into theta =1?
          $endgroup$
          – Ongky Denny Wijaya
          Dec 11 '18 at 4:56












          $begingroup$
          @ of course typo. edited
          $endgroup$
          – dezdichado
          Dec 11 '18 at 5:03




          $begingroup$
          @ of course typo. edited
          $endgroup$
          – dezdichado
          Dec 11 '18 at 5:03




          1




          1




          $begingroup$
          OK, I'm wrong in x^2+y^2, Now the answer is correct.
          $endgroup$
          – Ongky Denny Wijaya
          Dec 11 '18 at 5:50




          $begingroup$
          OK, I'm wrong in x^2+y^2, Now the answer is correct.
          $endgroup$
          – Ongky Denny Wijaya
          Dec 11 '18 at 5:50


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034844%2fcalculate-this-triple-integral-in-cylindrical-coordinates-the-result-is-differe%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten