Calculate this triple integral in cylindrical coordinates, the result is different with triple integral in...
$begingroup$
I want to calculate triple integral
begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
(the surface is $z=x^2+y^2$, $0leq zleq 1$.)
In MAPLE, I have to calculate it, and the result is
$$dfrac{2}{3}pi.$$
Now I want calculate the triple integral with cylindrical coordinates, become this
begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
begin{eqnarray}
intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
&=&left[dfrac{1}{4}thetaright]_0^{2pi}\
&=&dfrac{1}{2}pi.
end{eqnarray}
The results are different.
Am I wrong?
integration
$endgroup$
add a comment |
$begingroup$
I want to calculate triple integral
begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
(the surface is $z=x^2+y^2$, $0leq zleq 1$.)
In MAPLE, I have to calculate it, and the result is
$$dfrac{2}{3}pi.$$
Now I want calculate the triple integral with cylindrical coordinates, become this
begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
begin{eqnarray}
intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
&=&left[dfrac{1}{4}thetaright]_0^{2pi}\
&=&dfrac{1}{2}pi.
end{eqnarray}
The results are different.
Am I wrong?
integration
$endgroup$
add a comment |
$begingroup$
I want to calculate triple integral
begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
(the surface is $z=x^2+y^2$, $0leq zleq 1$.)
In MAPLE, I have to calculate it, and the result is
$$dfrac{2}{3}pi.$$
Now I want calculate the triple integral with cylindrical coordinates, become this
begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
begin{eqnarray}
intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
&=&left[dfrac{1}{4}thetaright]_0^{2pi}\
&=&dfrac{1}{2}pi.
end{eqnarray}
The results are different.
Am I wrong?
integration
$endgroup$
I want to calculate triple integral
begin{equation}intlimits_{-1}^{1}intlimits_{-sqrt{1-x^2}}^{sqrt{1-x^2}}intlimits_{x^2+y^2}^1 2z dzdydx.end{equation}
(the surface is $z=x^2+y^2$, $0leq zleq 1$.)
In MAPLE, I have to calculate it, and the result is
$$dfrac{2}{3}pi.$$
Now I want calculate the triple integral with cylindrical coordinates, become this
begin{equation}intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta.end{equation}
begin{eqnarray}
intlimits_{0}^{2pi}intlimits_{0}^{1}intlimits_{r}^1 2zr dzdrdtheta
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[z^2rright]_r^1drdtheta\
&=&
intlimits_{0}^{2pi}intlimits_{0}^{1}left[r-r^3right]drdtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{2}r^2-dfrac{1}{4}r^4right]_0^1dtheta\
&=&
intlimits_{0}^{2pi}left[dfrac{1}{4}right]dtheta\
&=&left[dfrac{1}{4}thetaright]_0^{2pi}\
&=&dfrac{1}{2}pi.
end{eqnarray}
The results are different.
Am I wrong?
integration
integration
asked Dec 11 '18 at 3:21
Ongky Denny WijayaOngky Denny Wijaya
3078
3078
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
Hence, your integral should become:
$$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$
$endgroup$
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034844%2fcalculate-this-triple-integral-in-cylindrical-coordinates-the-result-is-differe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
Hence, your integral should become:
$$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$
$endgroup$
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
add a comment |
$begingroup$
In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
Hence, your integral should become:
$$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$
$endgroup$
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
add a comment |
$begingroup$
In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
Hence, your integral should become:
$$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$
$endgroup$
In cylindrical coordinate system, one has $$r^2 = x^2+y^2.$$
Hence, your integral should become:
$$int_0^{2pi}int_0^1int_{r^2}^12zrdzdrdtheta$$
edited Dec 11 '18 at 5:03
answered Dec 11 '18 at 4:50
dezdichadodezdichado
6,3811929
6,3811929
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
add a comment |
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
why theta = 0 into theta =1?
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 4:56
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
$begingroup$
@ of course typo. edited
$endgroup$
– dezdichado
Dec 11 '18 at 5:03
1
1
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
$begingroup$
OK, I'm wrong in x^2+y^2, Now the answer is correct.
$endgroup$
– Ongky Denny Wijaya
Dec 11 '18 at 5:50
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034844%2fcalculate-this-triple-integral-in-cylindrical-coordinates-the-result-is-differe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown