Ceiling and Floor function
$begingroup$
I believe that I have found a trigonometric expression for both the ceiling and floor function, and I seek confirmation that it is, indeed, correct.
Update
trigonometry pi floor-function ceiling-function
$endgroup$
|
show 12 more comments
$begingroup$
I believe that I have found a trigonometric expression for both the ceiling and floor function, and I seek confirmation that it is, indeed, correct.
Update
trigonometry pi floor-function ceiling-function
$endgroup$
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
2
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
1
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
2
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
1
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19
|
show 12 more comments
$begingroup$
I believe that I have found a trigonometric expression for both the ceiling and floor function, and I seek confirmation that it is, indeed, correct.
Update
trigonometry pi floor-function ceiling-function
$endgroup$
I believe that I have found a trigonometric expression for both the ceiling and floor function, and I seek confirmation that it is, indeed, correct.
Update
trigonometry pi floor-function ceiling-function
trigonometry pi floor-function ceiling-function
edited Nov 25 '15 at 12:10
Taylor
asked Nov 24 '15 at 21:55
TaylorTaylor
333617
333617
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
2
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
1
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
2
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
1
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19
|
show 12 more comments
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
2
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
1
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
2
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
1
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
2
2
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
1
1
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
2
2
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
1
1
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19
|
show 12 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Note that you have the identity $tanleft(frac{pi}{2}-xright)=cot(x)$. Using this, your formula for the floor function is:
$$
begin{split} lfloor x rfloor &= x-frac{1}{2}+frac{arctanleft(tanleft(frac{pi}{2}-picdot xright)right)}{pi} \ &=x-frac{1}{2}+frac{frac{pi}{2}-picdot x+npi}{pi}, text{ for }ninmathbb{Z} \ &=x-frac{1}{2}+frac{1}{2}-x+n \ &=n end{split}
$$
Then there is some $nin mathbb{Z}$ such that $n=lfloor x rfloor$. If, as usual, you insist that $-pile arctan(x) le pi$ this then forces:
$$
begin{split} && -1le frac{1}{2}-x+n le 1 \ &implies& -frac{3}{2}le n-x le frac{1}{2} \ &implies& x-frac{3}{2} le n le x+frac{1}{2} end{split}
$$
So the value for $n$ is close to $lfloor x rfloor$. I'm not sure how computers choose which value to pick for $arctan$ but it appears to always pick the right one for your formula to work. I'm not sure it would be a good idea to use this formula in your work unless you know which value of $arctan$ to pick to ensure that you get the right answer.
$endgroup$
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
add a comment |
$begingroup$
If you're using the single-valued $arctan$, i.e. $-frac{pi}{2} leq arctan(x) leq frac{pi}{2}$, which is what all computer languages I've seen use, this works perfectly fine.
Proof:
Let $x = s(a + b)$, where $a in mathbb{N}$, $0 leq b < 1$ and $s in {-1,1}$. We can call $a$ the absolute integer part, $b$ the absolute fractional part, and $s$ is $x$'s sign.
Then:
$$
begin{align*}
frac{arctan(cot(pi x))}{pi}
&= frac{arctan(cot(pi s(a + b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi a + pi b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi b))}{pi}\[1em]
&= frac{arctan(scdottan(frac{pi}{2} - pi b))}{pi}\[1em]
&= frac{arctan(scdottan(pi(frac{1}{2} - b)))}{pi}\[1em]
&= frac{arctan(tan(pi s(frac{1}{2} - b)))}{pi}\[1em]
&= frac{pi s(frac{1}{2} - b)}{pi}\[1em]
&= sbigg(frac{1}{2} - bbigg)\[1em]
end{align*}
$$
Note that we can assert that $arctan(tan(pi s(frac{1}{2} - b)) = pi s(frac{1}{2} - b)$ without issues only because
$$
begin{alignat*}{5}
0 && quad leq && b quad && < quad && 1 &&implies\[0.5em]
0 && quad geq && -b quad && > quad && -1 &&implies\[0.5em]
frac{1}{2} && quad geq && quad frac{1}{2} - b quad && > quad && -frac{1}{2} &&implies\[0.5em]
frac{pi}{2} && quad geq && piBigg(frac{1}{2} - bBigg) quad && > quad && -frac{pi}{2} &&\
end{alignat*}
$$
$arctan(tan(x)) = x$ only holds for $x$ in that range. For example, $arctan(tan(x)) = x - pi$ if $frac{pi}{2} < x < pi$.
With that said...
$$
begin{align*}
lfloor x rfloor &= x - frac{1}{2} + sbigg(frac{1}{2} - bbigg)\[0.5em]
&= s(a + b) - frac{1 - s}{2} - sb\[0.5em]
&= s(a + b - b) - frac{1 - s}{2}\[0.5em]
&= sa - frac{1 - s}{2}\[0.5em]
end{align*}
$$
If $s=1$, $lfloor xrfloor = a - frac{1 - 1}{2} = a$.
If $s=-1$, $lfloor xrfloor = -a - frac{1 + 1}{2} = -a - 1 = -(a + 1)$.
This works because $lfloor pm y.uwv rfloor$ is y if the number is positive, and $-(y + 1)$ if the number is negative. e.g. $lfloor 1.2rfloor = 1$ but $lfloor -1.2rfloor = -2$.
Proving that your $ceil$ function works should go about the same way.
I realize I am three years late to this but I initially was going to post my own trigonometric floor:
$$
lfloor x rfloor = x - text{frac}(x)\[1.4em]
%
text{frac}(x) = text{sgn}Big(sin(2pi x)Big)Bigg( frac{cos^{-1}(cos(2pi x))}{2pi} - frac{1}{2} Bigg) + frac{1}{2}left| text{sgn}Big(sin(2pi x)Big)right|\[1.4em]
%
text{sgn}(x) = frac{1}{2}Bigg(frac{cot^{-1}(x) - cot^{-1}(-x)}{big|cot^{-1}(x)big|}Bigg)
$$
But yours seems a bit simpler.
$endgroup$
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1545006%2fceiling-and-floor-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that you have the identity $tanleft(frac{pi}{2}-xright)=cot(x)$. Using this, your formula for the floor function is:
$$
begin{split} lfloor x rfloor &= x-frac{1}{2}+frac{arctanleft(tanleft(frac{pi}{2}-picdot xright)right)}{pi} \ &=x-frac{1}{2}+frac{frac{pi}{2}-picdot x+npi}{pi}, text{ for }ninmathbb{Z} \ &=x-frac{1}{2}+frac{1}{2}-x+n \ &=n end{split}
$$
Then there is some $nin mathbb{Z}$ such that $n=lfloor x rfloor$. If, as usual, you insist that $-pile arctan(x) le pi$ this then forces:
$$
begin{split} && -1le frac{1}{2}-x+n le 1 \ &implies& -frac{3}{2}le n-x le frac{1}{2} \ &implies& x-frac{3}{2} le n le x+frac{1}{2} end{split}
$$
So the value for $n$ is close to $lfloor x rfloor$. I'm not sure how computers choose which value to pick for $arctan$ but it appears to always pick the right one for your formula to work. I'm not sure it would be a good idea to use this formula in your work unless you know which value of $arctan$ to pick to ensure that you get the right answer.
$endgroup$
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
add a comment |
$begingroup$
Note that you have the identity $tanleft(frac{pi}{2}-xright)=cot(x)$. Using this, your formula for the floor function is:
$$
begin{split} lfloor x rfloor &= x-frac{1}{2}+frac{arctanleft(tanleft(frac{pi}{2}-picdot xright)right)}{pi} \ &=x-frac{1}{2}+frac{frac{pi}{2}-picdot x+npi}{pi}, text{ for }ninmathbb{Z} \ &=x-frac{1}{2}+frac{1}{2}-x+n \ &=n end{split}
$$
Then there is some $nin mathbb{Z}$ such that $n=lfloor x rfloor$. If, as usual, you insist that $-pile arctan(x) le pi$ this then forces:
$$
begin{split} && -1le frac{1}{2}-x+n le 1 \ &implies& -frac{3}{2}le n-x le frac{1}{2} \ &implies& x-frac{3}{2} le n le x+frac{1}{2} end{split}
$$
So the value for $n$ is close to $lfloor x rfloor$. I'm not sure how computers choose which value to pick for $arctan$ but it appears to always pick the right one for your formula to work. I'm not sure it would be a good idea to use this formula in your work unless you know which value of $arctan$ to pick to ensure that you get the right answer.
$endgroup$
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
add a comment |
$begingroup$
Note that you have the identity $tanleft(frac{pi}{2}-xright)=cot(x)$. Using this, your formula for the floor function is:
$$
begin{split} lfloor x rfloor &= x-frac{1}{2}+frac{arctanleft(tanleft(frac{pi}{2}-picdot xright)right)}{pi} \ &=x-frac{1}{2}+frac{frac{pi}{2}-picdot x+npi}{pi}, text{ for }ninmathbb{Z} \ &=x-frac{1}{2}+frac{1}{2}-x+n \ &=n end{split}
$$
Then there is some $nin mathbb{Z}$ such that $n=lfloor x rfloor$. If, as usual, you insist that $-pile arctan(x) le pi$ this then forces:
$$
begin{split} && -1le frac{1}{2}-x+n le 1 \ &implies& -frac{3}{2}le n-x le frac{1}{2} \ &implies& x-frac{3}{2} le n le x+frac{1}{2} end{split}
$$
So the value for $n$ is close to $lfloor x rfloor$. I'm not sure how computers choose which value to pick for $arctan$ but it appears to always pick the right one for your formula to work. I'm not sure it would be a good idea to use this formula in your work unless you know which value of $arctan$ to pick to ensure that you get the right answer.
$endgroup$
Note that you have the identity $tanleft(frac{pi}{2}-xright)=cot(x)$. Using this, your formula for the floor function is:
$$
begin{split} lfloor x rfloor &= x-frac{1}{2}+frac{arctanleft(tanleft(frac{pi}{2}-picdot xright)right)}{pi} \ &=x-frac{1}{2}+frac{frac{pi}{2}-picdot x+npi}{pi}, text{ for }ninmathbb{Z} \ &=x-frac{1}{2}+frac{1}{2}-x+n \ &=n end{split}
$$
Then there is some $nin mathbb{Z}$ such that $n=lfloor x rfloor$. If, as usual, you insist that $-pile arctan(x) le pi$ this then forces:
$$
begin{split} && -1le frac{1}{2}-x+n le 1 \ &implies& -frac{3}{2}le n-x le frac{1}{2} \ &implies& x-frac{3}{2} le n le x+frac{1}{2} end{split}
$$
So the value for $n$ is close to $lfloor x rfloor$. I'm not sure how computers choose which value to pick for $arctan$ but it appears to always pick the right one for your formula to work. I'm not sure it would be a good idea to use this formula in your work unless you know which value of $arctan$ to pick to ensure that you get the right answer.
edited Nov 24 '15 at 22:52
answered Nov 24 '15 at 22:30
Sam WeatherhogSam Weatherhog
1,267515
1,267515
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
add a comment |
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
Does that mean that the formula is correct, then?
$endgroup$
– Taylor
Nov 24 '15 at 22:32
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
$begingroup$
It will be correct for some value of $arctan$ but $arctan$ is multiple valued so then you're just choosing the value of $arctan$ that makes the formula work. For example, if $x=1.6$ then $arctan(cot(pi*x))$ could be $-0.3142$ (which makes the formula work) or you could choose $-3.4558$ and this value will not make the formula work.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:37
add a comment |
$begingroup$
If you're using the single-valued $arctan$, i.e. $-frac{pi}{2} leq arctan(x) leq frac{pi}{2}$, which is what all computer languages I've seen use, this works perfectly fine.
Proof:
Let $x = s(a + b)$, where $a in mathbb{N}$, $0 leq b < 1$ and $s in {-1,1}$. We can call $a$ the absolute integer part, $b$ the absolute fractional part, and $s$ is $x$'s sign.
Then:
$$
begin{align*}
frac{arctan(cot(pi x))}{pi}
&= frac{arctan(cot(pi s(a + b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi a + pi b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi b))}{pi}\[1em]
&= frac{arctan(scdottan(frac{pi}{2} - pi b))}{pi}\[1em]
&= frac{arctan(scdottan(pi(frac{1}{2} - b)))}{pi}\[1em]
&= frac{arctan(tan(pi s(frac{1}{2} - b)))}{pi}\[1em]
&= frac{pi s(frac{1}{2} - b)}{pi}\[1em]
&= sbigg(frac{1}{2} - bbigg)\[1em]
end{align*}
$$
Note that we can assert that $arctan(tan(pi s(frac{1}{2} - b)) = pi s(frac{1}{2} - b)$ without issues only because
$$
begin{alignat*}{5}
0 && quad leq && b quad && < quad && 1 &&implies\[0.5em]
0 && quad geq && -b quad && > quad && -1 &&implies\[0.5em]
frac{1}{2} && quad geq && quad frac{1}{2} - b quad && > quad && -frac{1}{2} &&implies\[0.5em]
frac{pi}{2} && quad geq && piBigg(frac{1}{2} - bBigg) quad && > quad && -frac{pi}{2} &&\
end{alignat*}
$$
$arctan(tan(x)) = x$ only holds for $x$ in that range. For example, $arctan(tan(x)) = x - pi$ if $frac{pi}{2} < x < pi$.
With that said...
$$
begin{align*}
lfloor x rfloor &= x - frac{1}{2} + sbigg(frac{1}{2} - bbigg)\[0.5em]
&= s(a + b) - frac{1 - s}{2} - sb\[0.5em]
&= s(a + b - b) - frac{1 - s}{2}\[0.5em]
&= sa - frac{1 - s}{2}\[0.5em]
end{align*}
$$
If $s=1$, $lfloor xrfloor = a - frac{1 - 1}{2} = a$.
If $s=-1$, $lfloor xrfloor = -a - frac{1 + 1}{2} = -a - 1 = -(a + 1)$.
This works because $lfloor pm y.uwv rfloor$ is y if the number is positive, and $-(y + 1)$ if the number is negative. e.g. $lfloor 1.2rfloor = 1$ but $lfloor -1.2rfloor = -2$.
Proving that your $ceil$ function works should go about the same way.
I realize I am three years late to this but I initially was going to post my own trigonometric floor:
$$
lfloor x rfloor = x - text{frac}(x)\[1.4em]
%
text{frac}(x) = text{sgn}Big(sin(2pi x)Big)Bigg( frac{cos^{-1}(cos(2pi x))}{2pi} - frac{1}{2} Bigg) + frac{1}{2}left| text{sgn}Big(sin(2pi x)Big)right|\[1.4em]
%
text{sgn}(x) = frac{1}{2}Bigg(frac{cot^{-1}(x) - cot^{-1}(-x)}{big|cot^{-1}(x)big|}Bigg)
$$
But yours seems a bit simpler.
$endgroup$
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
add a comment |
$begingroup$
If you're using the single-valued $arctan$, i.e. $-frac{pi}{2} leq arctan(x) leq frac{pi}{2}$, which is what all computer languages I've seen use, this works perfectly fine.
Proof:
Let $x = s(a + b)$, where $a in mathbb{N}$, $0 leq b < 1$ and $s in {-1,1}$. We can call $a$ the absolute integer part, $b$ the absolute fractional part, and $s$ is $x$'s sign.
Then:
$$
begin{align*}
frac{arctan(cot(pi x))}{pi}
&= frac{arctan(cot(pi s(a + b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi a + pi b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi b))}{pi}\[1em]
&= frac{arctan(scdottan(frac{pi}{2} - pi b))}{pi}\[1em]
&= frac{arctan(scdottan(pi(frac{1}{2} - b)))}{pi}\[1em]
&= frac{arctan(tan(pi s(frac{1}{2} - b)))}{pi}\[1em]
&= frac{pi s(frac{1}{2} - b)}{pi}\[1em]
&= sbigg(frac{1}{2} - bbigg)\[1em]
end{align*}
$$
Note that we can assert that $arctan(tan(pi s(frac{1}{2} - b)) = pi s(frac{1}{2} - b)$ without issues only because
$$
begin{alignat*}{5}
0 && quad leq && b quad && < quad && 1 &&implies\[0.5em]
0 && quad geq && -b quad && > quad && -1 &&implies\[0.5em]
frac{1}{2} && quad geq && quad frac{1}{2} - b quad && > quad && -frac{1}{2} &&implies\[0.5em]
frac{pi}{2} && quad geq && piBigg(frac{1}{2} - bBigg) quad && > quad && -frac{pi}{2} &&\
end{alignat*}
$$
$arctan(tan(x)) = x$ only holds for $x$ in that range. For example, $arctan(tan(x)) = x - pi$ if $frac{pi}{2} < x < pi$.
With that said...
$$
begin{align*}
lfloor x rfloor &= x - frac{1}{2} + sbigg(frac{1}{2} - bbigg)\[0.5em]
&= s(a + b) - frac{1 - s}{2} - sb\[0.5em]
&= s(a + b - b) - frac{1 - s}{2}\[0.5em]
&= sa - frac{1 - s}{2}\[0.5em]
end{align*}
$$
If $s=1$, $lfloor xrfloor = a - frac{1 - 1}{2} = a$.
If $s=-1$, $lfloor xrfloor = -a - frac{1 + 1}{2} = -a - 1 = -(a + 1)$.
This works because $lfloor pm y.uwv rfloor$ is y if the number is positive, and $-(y + 1)$ if the number is negative. e.g. $lfloor 1.2rfloor = 1$ but $lfloor -1.2rfloor = -2$.
Proving that your $ceil$ function works should go about the same way.
I realize I am three years late to this but I initially was going to post my own trigonometric floor:
$$
lfloor x rfloor = x - text{frac}(x)\[1.4em]
%
text{frac}(x) = text{sgn}Big(sin(2pi x)Big)Bigg( frac{cos^{-1}(cos(2pi x))}{2pi} - frac{1}{2} Bigg) + frac{1}{2}left| text{sgn}Big(sin(2pi x)Big)right|\[1.4em]
%
text{sgn}(x) = frac{1}{2}Bigg(frac{cot^{-1}(x) - cot^{-1}(-x)}{big|cot^{-1}(x)big|}Bigg)
$$
But yours seems a bit simpler.
$endgroup$
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
add a comment |
$begingroup$
If you're using the single-valued $arctan$, i.e. $-frac{pi}{2} leq arctan(x) leq frac{pi}{2}$, which is what all computer languages I've seen use, this works perfectly fine.
Proof:
Let $x = s(a + b)$, where $a in mathbb{N}$, $0 leq b < 1$ and $s in {-1,1}$. We can call $a$ the absolute integer part, $b$ the absolute fractional part, and $s$ is $x$'s sign.
Then:
$$
begin{align*}
frac{arctan(cot(pi x))}{pi}
&= frac{arctan(cot(pi s(a + b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi a + pi b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi b))}{pi}\[1em]
&= frac{arctan(scdottan(frac{pi}{2} - pi b))}{pi}\[1em]
&= frac{arctan(scdottan(pi(frac{1}{2} - b)))}{pi}\[1em]
&= frac{arctan(tan(pi s(frac{1}{2} - b)))}{pi}\[1em]
&= frac{pi s(frac{1}{2} - b)}{pi}\[1em]
&= sbigg(frac{1}{2} - bbigg)\[1em]
end{align*}
$$
Note that we can assert that $arctan(tan(pi s(frac{1}{2} - b)) = pi s(frac{1}{2} - b)$ without issues only because
$$
begin{alignat*}{5}
0 && quad leq && b quad && < quad && 1 &&implies\[0.5em]
0 && quad geq && -b quad && > quad && -1 &&implies\[0.5em]
frac{1}{2} && quad geq && quad frac{1}{2} - b quad && > quad && -frac{1}{2} &&implies\[0.5em]
frac{pi}{2} && quad geq && piBigg(frac{1}{2} - bBigg) quad && > quad && -frac{pi}{2} &&\
end{alignat*}
$$
$arctan(tan(x)) = x$ only holds for $x$ in that range. For example, $arctan(tan(x)) = x - pi$ if $frac{pi}{2} < x < pi$.
With that said...
$$
begin{align*}
lfloor x rfloor &= x - frac{1}{2} + sbigg(frac{1}{2} - bbigg)\[0.5em]
&= s(a + b) - frac{1 - s}{2} - sb\[0.5em]
&= s(a + b - b) - frac{1 - s}{2}\[0.5em]
&= sa - frac{1 - s}{2}\[0.5em]
end{align*}
$$
If $s=1$, $lfloor xrfloor = a - frac{1 - 1}{2} = a$.
If $s=-1$, $lfloor xrfloor = -a - frac{1 + 1}{2} = -a - 1 = -(a + 1)$.
This works because $lfloor pm y.uwv rfloor$ is y if the number is positive, and $-(y + 1)$ if the number is negative. e.g. $lfloor 1.2rfloor = 1$ but $lfloor -1.2rfloor = -2$.
Proving that your $ceil$ function works should go about the same way.
I realize I am three years late to this but I initially was going to post my own trigonometric floor:
$$
lfloor x rfloor = x - text{frac}(x)\[1.4em]
%
text{frac}(x) = text{sgn}Big(sin(2pi x)Big)Bigg( frac{cos^{-1}(cos(2pi x))}{2pi} - frac{1}{2} Bigg) + frac{1}{2}left| text{sgn}Big(sin(2pi x)Big)right|\[1.4em]
%
text{sgn}(x) = frac{1}{2}Bigg(frac{cot^{-1}(x) - cot^{-1}(-x)}{big|cot^{-1}(x)big|}Bigg)
$$
But yours seems a bit simpler.
$endgroup$
If you're using the single-valued $arctan$, i.e. $-frac{pi}{2} leq arctan(x) leq frac{pi}{2}$, which is what all computer languages I've seen use, this works perfectly fine.
Proof:
Let $x = s(a + b)$, where $a in mathbb{N}$, $0 leq b < 1$ and $s in {-1,1}$. We can call $a$ the absolute integer part, $b$ the absolute fractional part, and $s$ is $x$'s sign.
Then:
$$
begin{align*}
frac{arctan(cot(pi x))}{pi}
&= frac{arctan(cot(pi s(a + b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi a + pi b)))}{pi}\[1em]
&= frac{arctan(scdotcot(pi b))}{pi}\[1em]
&= frac{arctan(scdottan(frac{pi}{2} - pi b))}{pi}\[1em]
&= frac{arctan(scdottan(pi(frac{1}{2} - b)))}{pi}\[1em]
&= frac{arctan(tan(pi s(frac{1}{2} - b)))}{pi}\[1em]
&= frac{pi s(frac{1}{2} - b)}{pi}\[1em]
&= sbigg(frac{1}{2} - bbigg)\[1em]
end{align*}
$$
Note that we can assert that $arctan(tan(pi s(frac{1}{2} - b)) = pi s(frac{1}{2} - b)$ without issues only because
$$
begin{alignat*}{5}
0 && quad leq && b quad && < quad && 1 &&implies\[0.5em]
0 && quad geq && -b quad && > quad && -1 &&implies\[0.5em]
frac{1}{2} && quad geq && quad frac{1}{2} - b quad && > quad && -frac{1}{2} &&implies\[0.5em]
frac{pi}{2} && quad geq && piBigg(frac{1}{2} - bBigg) quad && > quad && -frac{pi}{2} &&\
end{alignat*}
$$
$arctan(tan(x)) = x$ only holds for $x$ in that range. For example, $arctan(tan(x)) = x - pi$ if $frac{pi}{2} < x < pi$.
With that said...
$$
begin{align*}
lfloor x rfloor &= x - frac{1}{2} + sbigg(frac{1}{2} - bbigg)\[0.5em]
&= s(a + b) - frac{1 - s}{2} - sb\[0.5em]
&= s(a + b - b) - frac{1 - s}{2}\[0.5em]
&= sa - frac{1 - s}{2}\[0.5em]
end{align*}
$$
If $s=1$, $lfloor xrfloor = a - frac{1 - 1}{2} = a$.
If $s=-1$, $lfloor xrfloor = -a - frac{1 + 1}{2} = -a - 1 = -(a + 1)$.
This works because $lfloor pm y.uwv rfloor$ is y if the number is positive, and $-(y + 1)$ if the number is negative. e.g. $lfloor 1.2rfloor = 1$ but $lfloor -1.2rfloor = -2$.
Proving that your $ceil$ function works should go about the same way.
I realize I am three years late to this but I initially was going to post my own trigonometric floor:
$$
lfloor x rfloor = x - text{frac}(x)\[1.4em]
%
text{frac}(x) = text{sgn}Big(sin(2pi x)Big)Bigg( frac{cos^{-1}(cos(2pi x))}{2pi} - frac{1}{2} Bigg) + frac{1}{2}left| text{sgn}Big(sin(2pi x)Big)right|\[1.4em]
%
text{sgn}(x) = frac{1}{2}Bigg(frac{cot^{-1}(x) - cot^{-1}(-x)}{big|cot^{-1}(x)big|}Bigg)
$$
But yours seems a bit simpler.
edited Dec 7 '18 at 4:53
answered Jul 6 '18 at 1:15
phicrphicr
1438
1438
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
add a comment |
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
$begingroup$
This is excellent and much better defined, thank you for sharing +1
$endgroup$
– Albert Renshaw
Dec 4 '18 at 21:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1545006%2fceiling-and-floor-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
your function is not defined for integer
$endgroup$
– stity
Nov 24 '15 at 22:02
2
$begingroup$
Because $tan$ of integer multiples of $pi$ is $0$ so $cot$ is undefined at these points.
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:05
1
$begingroup$
Just define $f(x)=arctan(cot(pi x))/pi$ for $xnotinmathbb Z$ and $f(x)=1/2$ for $xinmathbb Z$ and then use that $f$ in your formula for floor.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:09
2
$begingroup$
@Taylor yes $lim_{xto infty}arctan(x)=frac{pi}{2}$. Gregory is saying that you make your function $x-frac{1}{2}+f(x)$ where $f$ is defined as in his comment
$endgroup$
– Sam Weatherhog
Nov 24 '15 at 22:12
1
$begingroup$
@Taylor I mean define $f(x)=left{begin{array}{ll} arctan(cot(pi x))/pi, & xnotinmathbb Z\ 1/2, & xinmathbb Zend{array}right.$. Then $lfloor{x}rfloor = x - frac{1}{2} + f(x)$ $forall x$.
$endgroup$
– Gregory Grant
Nov 24 '15 at 22:19