Incircle defined by three lines expressed in normal form












0












$begingroup$


What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?



The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.



The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.



I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
    $endgroup$
    – Blue
    Dec 7 '18 at 8:17
















0












$begingroup$


What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?



The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.



The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.



I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
    $endgroup$
    – Blue
    Dec 7 '18 at 8:17














0












0








0





$begingroup$


What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?



The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.



The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.



I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.










share|cite|improve this question









$endgroup$




What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?



The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.



The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.



I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.







linear-algebra geometry trigonometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 7 '18 at 7:59









Medical physicistMedical physicist

162112




162112












  • $begingroup$
    You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
    $endgroup$
    – Blue
    Dec 7 '18 at 8:17


















  • $begingroup$
    You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
    $endgroup$
    – Blue
    Dec 7 '18 at 8:17
















$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17




$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17










3 Answers
3






active

oldest

votes


















0












$begingroup$

One approach is to work a bit backwards.



Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$

The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.



We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as



$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$



Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find




The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$

has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$







share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.



    For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.



    Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
    $$
    a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
    a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
    $$

    Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
    $$
    a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
    a_2x + b_2y + c_2 = -a_3x - b_3y - c3
    $$

    (We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).



    Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      The incircle center coordinates $q$ can be obtained solving a minimization problem.



      Given the lines



      $$
      l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
      $$



      minimizing



      $$
      D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
      $$



      Now solving



      $$
      D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
      D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
      $$



      which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$



      or after substitutions



      $$
      left(begin{array}{ccc}
      vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
      vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
      vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
      end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
      $$



      Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have



      $$
      M = left(begin{array}{ccc}
      vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
      vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
      vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
      end{array}right) = left(begin{array}{ccc}
      1 & cos u & cos v\
      cos u & 1 & cos w\
      cos v & cos w & 1
      end{array}right)
      $$



      and then



      $$
      M^{-1} = frac{1}{Delta}left(
      begin{array}{ccc}
      sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
      cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
      cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
      end{array}
      right)
      $$



      with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$



      NOTE



      $$
      a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
      $$



      with



      $$
      p = (x,y)\
      p_i = (0,-frac{c_i}{b_i})\
      vec v_i = (a_i, b_i)
      $$






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029622%2fincircle-defined-by-three-lines-expressed-in-normal-form%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        One approach is to work a bit backwards.



        Consider the three lines with normal form
        $$begin{align}
        x cos 2alpha + y sin 2alpha &= r \
        x cos 2beta + y sin 2beta &= r \
        x cos 2gamma + y sin 2gamma &= r
        end{align} tag{1}$$

        The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.



        We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as



        $$begin{align}
        x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
        x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
        x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
        end{align} tag{2}$$



        Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find




        The incircle of the triangle with side-lines
        $$begin{align}
        x cos 2alpha + y sin 2alpha &= a \
        x cos 2beta, + y sin 2beta, &= b\
        x cos 2gamma, + y sin 2gamma, &= c
        end{align} tag{3}$$

        has center $(h,k)$ and radius $r$, where
        $$begin{align}
        h &= phantom{-}frac{1}{2sigma}left(;
        a cos(beta + gamma) sin(beta - gamma)
        + b cos(gamma + alpha) sin(gamma - alpha)
        + c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
        k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
        b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
        r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
        sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$







        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          One approach is to work a bit backwards.



          Consider the three lines with normal form
          $$begin{align}
          x cos 2alpha + y sin 2alpha &= r \
          x cos 2beta + y sin 2beta &= r \
          x cos 2gamma + y sin 2gamma &= r
          end{align} tag{1}$$

          The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.



          We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as



          $$begin{align}
          x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
          x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
          x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
          end{align} tag{2}$$



          Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find




          The incircle of the triangle with side-lines
          $$begin{align}
          x cos 2alpha + y sin 2alpha &= a \
          x cos 2beta, + y sin 2beta, &= b\
          x cos 2gamma, + y sin 2gamma, &= c
          end{align} tag{3}$$

          has center $(h,k)$ and radius $r$, where
          $$begin{align}
          h &= phantom{-}frac{1}{2sigma}left(;
          a cos(beta + gamma) sin(beta - gamma)
          + b cos(gamma + alpha) sin(gamma - alpha)
          + c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
          k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
          b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
          r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
          sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$







          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            One approach is to work a bit backwards.



            Consider the three lines with normal form
            $$begin{align}
            x cos 2alpha + y sin 2alpha &= r \
            x cos 2beta + y sin 2beta &= r \
            x cos 2gamma + y sin 2gamma &= r
            end{align} tag{1}$$

            The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.



            We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as



            $$begin{align}
            x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
            x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
            x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
            end{align} tag{2}$$



            Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find




            The incircle of the triangle with side-lines
            $$begin{align}
            x cos 2alpha + y sin 2alpha &= a \
            x cos 2beta, + y sin 2beta, &= b\
            x cos 2gamma, + y sin 2gamma, &= c
            end{align} tag{3}$$

            has center $(h,k)$ and radius $r$, where
            $$begin{align}
            h &= phantom{-}frac{1}{2sigma}left(;
            a cos(beta + gamma) sin(beta - gamma)
            + b cos(gamma + alpha) sin(gamma - alpha)
            + c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
            k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
            b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
            r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
            sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$







            share|cite|improve this answer









            $endgroup$



            One approach is to work a bit backwards.



            Consider the three lines with normal form
            $$begin{align}
            x cos 2alpha + y sin 2alpha &= r \
            x cos 2beta + y sin 2beta &= r \
            x cos 2gamma + y sin 2gamma &= r
            end{align} tag{1}$$

            The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.



            We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as



            $$begin{align}
            x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
            x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
            x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
            end{align} tag{2}$$



            Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find




            The incircle of the triangle with side-lines
            $$begin{align}
            x cos 2alpha + y sin 2alpha &= a \
            x cos 2beta, + y sin 2beta, &= b\
            x cos 2gamma, + y sin 2gamma, &= c
            end{align} tag{3}$$

            has center $(h,k)$ and radius $r$, where
            $$begin{align}
            h &= phantom{-}frac{1}{2sigma}left(;
            a cos(beta + gamma) sin(beta - gamma)
            + b cos(gamma + alpha) sin(gamma - alpha)
            + c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
            k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
            b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
            r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
            sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 7 '18 at 10:59









            BlueBlue

            48.3k870153




            48.3k870153























                2












                $begingroup$

                Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.



                For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.



                Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
                $$
                a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
                a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
                $$

                Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
                $$
                a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
                a_2x + b_2y + c_2 = -a_3x - b_3y - c3
                $$

                (We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).



                Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.



                  For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.



                  Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
                  $$
                  a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
                  a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
                  $$

                  Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
                  $$
                  a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
                  a_2x + b_2y + c_2 = -a_3x - b_3y - c3
                  $$

                  (We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).



                  Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.



                    For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.



                    Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
                    $$
                    a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
                    a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
                    $$

                    Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
                    $$
                    a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
                    a_2x + b_2y + c_2 = -a_3x - b_3y - c3
                    $$

                    (We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).



                    Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.






                    share|cite|improve this answer









                    $endgroup$



                    Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.



                    For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.



                    Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
                    $$
                    a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
                    a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
                    $$

                    Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
                    $$
                    a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
                    a_2x + b_2y + c_2 = -a_3x - b_3y - c3
                    $$

                    (We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).



                    Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 7 '18 at 8:30









                    ArthurArthur

                    114k7115197




                    114k7115197























                        0












                        $begingroup$

                        The incircle center coordinates $q$ can be obtained solving a minimization problem.



                        Given the lines



                        $$
                        l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
                        $$



                        minimizing



                        $$
                        D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
                        $$



                        Now solving



                        $$
                        D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
                        D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
                        $$



                        which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$



                        or after substitutions



                        $$
                        left(begin{array}{ccc}
                        vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                        vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                        vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                        end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
                        $$



                        Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have



                        $$
                        M = left(begin{array}{ccc}
                        vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                        vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                        vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                        end{array}right) = left(begin{array}{ccc}
                        1 & cos u & cos v\
                        cos u & 1 & cos w\
                        cos v & cos w & 1
                        end{array}right)
                        $$



                        and then



                        $$
                        M^{-1} = frac{1}{Delta}left(
                        begin{array}{ccc}
                        sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
                        cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
                        cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
                        end{array}
                        right)
                        $$



                        with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$



                        NOTE



                        $$
                        a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
                        $$



                        with



                        $$
                        p = (x,y)\
                        p_i = (0,-frac{c_i}{b_i})\
                        vec v_i = (a_i, b_i)
                        $$






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          The incircle center coordinates $q$ can be obtained solving a minimization problem.



                          Given the lines



                          $$
                          l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
                          $$



                          minimizing



                          $$
                          D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
                          $$



                          Now solving



                          $$
                          D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
                          D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
                          $$



                          which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$



                          or after substitutions



                          $$
                          left(begin{array}{ccc}
                          vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                          vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                          vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                          end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
                          $$



                          Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have



                          $$
                          M = left(begin{array}{ccc}
                          vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                          vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                          vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                          end{array}right) = left(begin{array}{ccc}
                          1 & cos u & cos v\
                          cos u & 1 & cos w\
                          cos v & cos w & 1
                          end{array}right)
                          $$



                          and then



                          $$
                          M^{-1} = frac{1}{Delta}left(
                          begin{array}{ccc}
                          sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
                          cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
                          cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
                          end{array}
                          right)
                          $$



                          with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$



                          NOTE



                          $$
                          a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
                          $$



                          with



                          $$
                          p = (x,y)\
                          p_i = (0,-frac{c_i}{b_i})\
                          vec v_i = (a_i, b_i)
                          $$






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            The incircle center coordinates $q$ can be obtained solving a minimization problem.



                            Given the lines



                            $$
                            l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
                            $$



                            minimizing



                            $$
                            D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
                            $$



                            Now solving



                            $$
                            D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
                            D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
                            $$



                            which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$



                            or after substitutions



                            $$
                            left(begin{array}{ccc}
                            vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                            vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                            vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                            end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
                            $$



                            Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have



                            $$
                            M = left(begin{array}{ccc}
                            vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                            vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                            vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                            end{array}right) = left(begin{array}{ccc}
                            1 & cos u & cos v\
                            cos u & 1 & cos w\
                            cos v & cos w & 1
                            end{array}right)
                            $$



                            and then



                            $$
                            M^{-1} = frac{1}{Delta}left(
                            begin{array}{ccc}
                            sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
                            cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
                            cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
                            end{array}
                            right)
                            $$



                            with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$



                            NOTE



                            $$
                            a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
                            $$



                            with



                            $$
                            p = (x,y)\
                            p_i = (0,-frac{c_i}{b_i})\
                            vec v_i = (a_i, b_i)
                            $$






                            share|cite|improve this answer











                            $endgroup$



                            The incircle center coordinates $q$ can be obtained solving a minimization problem.



                            Given the lines



                            $$
                            l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
                            $$



                            minimizing



                            $$
                            D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
                            $$



                            Now solving



                            $$
                            D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
                            D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
                            $$



                            which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$



                            or after substitutions



                            $$
                            left(begin{array}{ccc}
                            vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                            vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                            vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                            end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
                            $$



                            Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have



                            $$
                            M = left(begin{array}{ccc}
                            vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
                            vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
                            vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
                            end{array}right) = left(begin{array}{ccc}
                            1 & cos u & cos v\
                            cos u & 1 & cos w\
                            cos v & cos w & 1
                            end{array}right)
                            $$



                            and then



                            $$
                            M^{-1} = frac{1}{Delta}left(
                            begin{array}{ccc}
                            sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
                            cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
                            cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
                            end{array}
                            right)
                            $$



                            with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$



                            NOTE



                            $$
                            a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
                            $$



                            with



                            $$
                            p = (x,y)\
                            p_i = (0,-frac{c_i}{b_i})\
                            vec v_i = (a_i, b_i)
                            $$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 8 '18 at 16:18

























                            answered Dec 7 '18 at 11:19









                            CesareoCesareo

                            8,6343516




                            8,6343516






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029622%2fincircle-defined-by-three-lines-expressed-in-normal-form%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bundesstraße 106

                                Verónica Boquete

                                Ida-Boy-Ed-Garten