Incircle defined by three lines expressed in normal form
$begingroup$
What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?
The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.
The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.
I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.
linear-algebra geometry trigonometry
$endgroup$
add a comment |
$begingroup$
What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?
The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.
The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.
I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.
linear-algebra geometry trigonometry
$endgroup$
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17
add a comment |
$begingroup$
What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?
The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.
The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.
I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.
linear-algebra geometry trigonometry
$endgroup$
What are the coordinates and the radius of the incircle defined by three lines expressed in normal form?
The lines are $a_i x + b_i y + c_i = 0$, where $a_i^2 + b_i^2 = 1$ and $i = 1, 2, 3$.
The coordinates of the incircle are $(x_c, y_c)$ and the radius is $r_c$.
I found a solution based on finding the vertices of the triangle formed by the three lines expressed in standard form, but I suspect that it should be a simpler solution using the normal form of the lines.
linear-algebra geometry trigonometry
linear-algebra geometry trigonometry
asked Dec 7 '18 at 7:59
Medical physicistMedical physicist
162112
162112
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17
add a comment |
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
One approach is to work a bit backwards.
Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$
The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.
We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as
$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$
Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find
The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$
has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$
$endgroup$
add a comment |
$begingroup$
Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.
For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.
Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
$$
a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
$$
Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
$$
a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
a_2x + b_2y + c_2 = -a_3x - b_3y - c3
$$
(We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).
Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.
$endgroup$
add a comment |
$begingroup$
The incircle center coordinates $q$ can be obtained solving a minimization problem.
Given the lines
$$
l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
$$
minimizing
$$
D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
$$
Now solving
$$
D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
$$
which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$
or after substitutions
$$
left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
$$
Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have
$$
M = left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right) = left(begin{array}{ccc}
1 & cos u & cos v\
cos u & 1 & cos w\
cos v & cos w & 1
end{array}right)
$$
and then
$$
M^{-1} = frac{1}{Delta}left(
begin{array}{ccc}
sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
end{array}
right)
$$
with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$
NOTE
$$
a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
$$
with
$$
p = (x,y)\
p_i = (0,-frac{c_i}{b_i})\
vec v_i = (a_i, b_i)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029622%2fincircle-defined-by-three-lines-expressed-in-normal-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One approach is to work a bit backwards.
Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$
The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.
We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as
$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$
Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find
The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$
has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$
$endgroup$
add a comment |
$begingroup$
One approach is to work a bit backwards.
Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$
The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.
We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as
$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$
Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find
The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$
has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$
$endgroup$
add a comment |
$begingroup$
One approach is to work a bit backwards.
Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$
The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.
We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as
$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$
Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find
The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$
has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$
$endgroup$
One approach is to work a bit backwards.
Consider the three lines with normal form
$$begin{align}
x cos 2alpha + y sin 2alpha &= r \
x cos 2beta + y sin 2beta &= r \
x cos 2gamma + y sin 2gamma &= r
end{align} tag{1}$$
The incircle of the corresponding triangle has radius $r$ and center $(0,0)$.
We can get three lines whose incircle has radius $r$ and whose center is $(h,k)$ by translating the lines in $(1)$ via the substitution: $xto x-h$, $yto y-k$. We can write the results as
$$begin{align}
x cos 2alpha + y sin 2alpha &= r + h cos 2alpha + k sin 2alpha \
x cos 2beta, + y sin 2beta, &= r + h cos 2beta + k sin 2beta\
x cos 2gamma, + y sin 2gamma, &= r + h cos 2gamma + k sin 2gamma
end{align} tag{2}$$
Conveniently, these equations are already in normal form. If we assign $a$, $b$, $c$ to the "constant terms" (that is, the right-hand sides) of the equations in $(2)$, we have a linear system in $r$, $h$, $k$ that we can readily solve (via linear combinations, Cramer's Rule, or what-have-you). The result reduces with a bit of trig, and we find
The incircle of the triangle with side-lines
$$begin{align}
x cos 2alpha + y sin 2alpha &= a \
x cos 2beta, + y sin 2beta, &= b\
x cos 2gamma, + y sin 2gamma, &= c
end{align} tag{3}$$
has center $(h,k)$ and radius $r$, where
$$begin{align}
h &= phantom{-}frac{1}{2sigma}left(;
a cos(beta + gamma) sin(beta - gamma)
+ b cos(gamma + alpha) sin(gamma - alpha)
+ c cos(alpha + beta) sin(alpha - beta);right) \[4pt]
k &= phantom{-}frac{1}{2sigma}left(; a sin(beta + gamma) sin(beta - gamma) +
b sin(gamma + alpha) sin(gamma-alpha) + c sin(alpha+beta) sin(alpha-beta);right) \[4pt]
r &= -frac{1}{4sigma}left(;a sin 2 (beta - gamma) + b sin 2 (gamma - alpha) + c sin 2 (alpha - beta);right) \[4pt]
sigma &= phantom{-}sin(beta-gamma)sin(gamma - alpha) sin(alpha - beta) end{align}$$
answered Dec 7 '18 at 10:59
BlueBlue
48.3k870153
48.3k870153
add a comment |
add a comment |
$begingroup$
Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.
For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.
Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
$$
a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
$$
Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
$$
a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
a_2x + b_2y + c_2 = -a_3x - b_3y - c3
$$
(We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).
Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.
$endgroup$
add a comment |
$begingroup$
Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.
For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.
Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
$$
a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
$$
Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
$$
a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
a_2x + b_2y + c_2 = -a_3x - b_3y - c3
$$
(We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).
Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.
$endgroup$
add a comment |
$begingroup$
Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.
For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.
Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
$$
a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
$$
Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
$$
a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
a_2x + b_2y + c_2 = -a_3x - b_3y - c3
$$
(We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).
Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.
$endgroup$
Assuming none of the lines are parallel, the center of a circle which is tangent to all three lines at once will necessarily lie on the intersection of the angle bisectors of where the lines intersect. So let's find those bisectors.
For this to work nicely, we first need to normalize the three lines (i.e. multiply or divide each equation by separate constants so that $a_1^2 + b_1^2 = a_2^2 + b_2^2 = a_3^2 + b_3^2$). You have already done this, but it's important not to forget, so I mention it here.
Take the intersection of lines 1 and 2. The two angle bisectors of that intersection are
$$
a_1x + b_1y + c_1 = a_2x + b_2y + c_2\ tag{1}
a_1x + b_1y + c_1 = -a_2x - b_2y - c_2
$$
Similarily, we get that the two bisectors at the intersection of lines 2 and 3 are given by
$$
a_2x + b_2y + c_2 = a_3x + b_3y + c_3\tag2
a_2x + b_2y + c_2 = -a_3x - b_3y - c3
$$
(We don't need the bisectors of the intersection between 1 and 3, as that doesn't give us any new information).
Now, pick one of the two lines from $(1)$ and one of the lines from $(2)$, and find their intersection. Then do the same for the three other combinations. What you now have are the centers of the incircle and the three excircles. The one with the smallest radius is the incircle.
answered Dec 7 '18 at 8:30
ArthurArthur
114k7115197
114k7115197
add a comment |
add a comment |
$begingroup$
The incircle center coordinates $q$ can be obtained solving a minimization problem.
Given the lines
$$
l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
$$
minimizing
$$
D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
$$
Now solving
$$
D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
$$
which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$
or after substitutions
$$
left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
$$
Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have
$$
M = left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right) = left(begin{array}{ccc}
1 & cos u & cos v\
cos u & 1 & cos w\
cos v & cos w & 1
end{array}right)
$$
and then
$$
M^{-1} = frac{1}{Delta}left(
begin{array}{ccc}
sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
end{array}
right)
$$
with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$
NOTE
$$
a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
$$
with
$$
p = (x,y)\
p_i = (0,-frac{c_i}{b_i})\
vec v_i = (a_i, b_i)
$$
$endgroup$
add a comment |
$begingroup$
The incircle center coordinates $q$ can be obtained solving a minimization problem.
Given the lines
$$
l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
$$
minimizing
$$
D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
$$
Now solving
$$
D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
$$
which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$
or after substitutions
$$
left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
$$
Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have
$$
M = left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right) = left(begin{array}{ccc}
1 & cos u & cos v\
cos u & 1 & cos w\
cos v & cos w & 1
end{array}right)
$$
and then
$$
M^{-1} = frac{1}{Delta}left(
begin{array}{ccc}
sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
end{array}
right)
$$
with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$
NOTE
$$
a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
$$
with
$$
p = (x,y)\
p_i = (0,-frac{c_i}{b_i})\
vec v_i = (a_i, b_i)
$$
$endgroup$
add a comment |
$begingroup$
The incircle center coordinates $q$ can be obtained solving a minimization problem.
Given the lines
$$
l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
$$
minimizing
$$
D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
$$
Now solving
$$
D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
$$
which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$
or after substitutions
$$
left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
$$
Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have
$$
M = left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right) = left(begin{array}{ccc}
1 & cos u & cos v\
cos u & 1 & cos w\
cos v & cos w & 1
end{array}right)
$$
and then
$$
M^{-1} = frac{1}{Delta}left(
begin{array}{ccc}
sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
end{array}
right)
$$
with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$
NOTE
$$
a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
$$
with
$$
p = (x,y)\
p_i = (0,-frac{c_i}{b_i})\
vec v_i = (a_i, b_i)
$$
$endgroup$
The incircle center coordinates $q$ can be obtained solving a minimization problem.
Given the lines
$$
l_ito p = p_i + lambda_ivec v_i, i = 1,2,3
$$
minimizing
$$
D(q,lambda) = sum_{i}^3||p_i+lambda_ivec v_i-q||^2
$$
Now solving
$$
D_q = sum_i^3 p_i+lambda_i vec v_i - q=vec 0\
D_{lambda_j} = sum_i^3 p_icdot vec v_j + lambda_i vec v_icdot vec v_j -qcdot vec v_j = 0
$$
which is a linear system in $q,lambda$ we obtain the incenter $q^*$ and the tangency points $p_i+lambda_i^*vec v_i$
or after substitutions
$$
left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right)left(begin{array}{c}lambda_1\ lambda_2\ lambda_3end{array}right) = left(begin{array}{c}(p_1+p_2+p_3)cdot vec v_1\ (p_1+p_2+p_3)cdot vec v_2\ (p_1+p_2+p_3)cdot vec v_3end{array}right)
$$
Now considering that $vec v_1cdotvec v_j = a_i a_j+b_i b_j$ and imposing $a_i^2+b_i^2 = 1$ we have
$$
M = left(begin{array}{ccc}
vec v_1cdotvec v_1 & vec v_1cdotvec v_2 & vec v_1cdotvec v_3\
vec v_2cdotvec v_1 & vec v_2cdotvec v_2 & vec v_2cdotvec v_3\
vec v_3cdotvec v_1 & vec v_3cdotvec v_2 & vec v_3cdotvec v_3
end{array}right) = left(begin{array}{ccc}
1 & cos u & cos v\
cos u & 1 & cos w\
cos v & cos w & 1
end{array}right)
$$
and then
$$
M^{-1} = frac{1}{Delta}left(
begin{array}{ccc}
sin ^2(w) & cos (v) cos (w)-cos (u) & cos (u) cos (w)-cos (v) \
cos (v) cos (w)-cos (u) & sin ^2(v) & cos (u) cos (v)-cos (w) \
cos (u) cos (w)-cos (v) & cos (u) cos (v)-cos (w) & sin ^2(u) \
end{array}
right)
$$
with $Delta = det M = 2 cos (u) cos (v) cos (w)-cos ^2(u)-cos ^2(v)+sin ^2(w)$
NOTE
$$
a_i x + b_i y + c_i = 0equiv ((x,y)-(0,-frac{c_i}{b_i}))cdot(a_i,b_i)=0equiv p = p_i+lambda_i vec v_i
$$
with
$$
p = (x,y)\
p_i = (0,-frac{c_i}{b_i})\
vec v_i = (a_i, b_i)
$$
edited Dec 8 '18 at 16:18
answered Dec 7 '18 at 11:19
CesareoCesareo
8,6343516
8,6343516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029622%2fincircle-defined-by-three-lines-expressed-in-normal-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You should give the solution you found, so that people don't duplicate your effort. (Also, it's easier to work a problem when you have a particular end-result in mind.)
$endgroup$
– Blue
Dec 7 '18 at 8:17