A convergent improper integral is non-zero?
$begingroup$
Consider a function $f(x):mathbb{R}mapsto mathbb{R}$. If the improper integral
begin{align}
int_{0}^{infty}f(x)dx
end{align}
converges, will the value of this integral be non-zero?
Or are there examples of $f(x)$ with improper integral being zero. (except for $f(x)=0$ for all $x$)
real-analysis integration
$endgroup$
add a comment |
$begingroup$
Consider a function $f(x):mathbb{R}mapsto mathbb{R}$. If the improper integral
begin{align}
int_{0}^{infty}f(x)dx
end{align}
converges, will the value of this integral be non-zero?
Or are there examples of $f(x)$ with improper integral being zero. (except for $f(x)=0$ for all $x$)
real-analysis integration
$endgroup$
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01
add a comment |
$begingroup$
Consider a function $f(x):mathbb{R}mapsto mathbb{R}$. If the improper integral
begin{align}
int_{0}^{infty}f(x)dx
end{align}
converges, will the value of this integral be non-zero?
Or are there examples of $f(x)$ with improper integral being zero. (except for $f(x)=0$ for all $x$)
real-analysis integration
$endgroup$
Consider a function $f(x):mathbb{R}mapsto mathbb{R}$. If the improper integral
begin{align}
int_{0}^{infty}f(x)dx
end{align}
converges, will the value of this integral be non-zero?
Or are there examples of $f(x)$ with improper integral being zero. (except for $f(x)=0$ for all $x$)
real-analysis integration
real-analysis integration
edited Dec 20 '18 at 3:54
guluzhu
asked Dec 20 '18 at 3:41
guluzhuguluzhu
538
538
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01
add a comment |
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$int_0^{infty } left(frac{1}{(x+1)^2}-frac{2}{(x+1)^3}right)dx=0$$
$endgroup$
add a comment |
$begingroup$
Take any $g$ for which the improper integral $int_0^{infty} g(x)dx$ has some finite value $C$ and take $f(x)=g(x)-Ce^{-x}$. Examples of $g$ are plenty; for example $g(x)=e^{-ax}$ with $a>0$.
$endgroup$
add a comment |
$begingroup$
Here is another example of an improper integral being zero:
begin{align}
int_0^infty frac{log x}{x^2+1},dx=0
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047124%2fa-convergent-improper-integral-is-non-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$int_0^{infty } left(frac{1}{(x+1)^2}-frac{2}{(x+1)^3}right)dx=0$$
$endgroup$
add a comment |
$begingroup$
$$int_0^{infty } left(frac{1}{(x+1)^2}-frac{2}{(x+1)^3}right)dx=0$$
$endgroup$
add a comment |
$begingroup$
$$int_0^{infty } left(frac{1}{(x+1)^2}-frac{2}{(x+1)^3}right)dx=0$$
$endgroup$
$$int_0^{infty } left(frac{1}{(x+1)^2}-frac{2}{(x+1)^3}right)dx=0$$
answered Dec 20 '18 at 3:45
Kemono ChenKemono Chen
3,1991844
3,1991844
add a comment |
add a comment |
$begingroup$
Take any $g$ for which the improper integral $int_0^{infty} g(x)dx$ has some finite value $C$ and take $f(x)=g(x)-Ce^{-x}$. Examples of $g$ are plenty; for example $g(x)=e^{-ax}$ with $a>0$.
$endgroup$
add a comment |
$begingroup$
Take any $g$ for which the improper integral $int_0^{infty} g(x)dx$ has some finite value $C$ and take $f(x)=g(x)-Ce^{-x}$. Examples of $g$ are plenty; for example $g(x)=e^{-ax}$ with $a>0$.
$endgroup$
add a comment |
$begingroup$
Take any $g$ for which the improper integral $int_0^{infty} g(x)dx$ has some finite value $C$ and take $f(x)=g(x)-Ce^{-x}$. Examples of $g$ are plenty; for example $g(x)=e^{-ax}$ with $a>0$.
$endgroup$
Take any $g$ for which the improper integral $int_0^{infty} g(x)dx$ has some finite value $C$ and take $f(x)=g(x)-Ce^{-x}$. Examples of $g$ are plenty; for example $g(x)=e^{-ax}$ with $a>0$.
answered Dec 20 '18 at 5:40
Kavi Rama MurthyKavi Rama Murthy
69.1k53169
69.1k53169
add a comment |
add a comment |
$begingroup$
Here is another example of an improper integral being zero:
begin{align}
int_0^infty frac{log x}{x^2+1},dx=0
end{align}
$endgroup$
add a comment |
$begingroup$
Here is another example of an improper integral being zero:
begin{align}
int_0^infty frac{log x}{x^2+1},dx=0
end{align}
$endgroup$
add a comment |
$begingroup$
Here is another example of an improper integral being zero:
begin{align}
int_0^infty frac{log x}{x^2+1},dx=0
end{align}
$endgroup$
Here is another example of an improper integral being zero:
begin{align}
int_0^infty frac{log x}{x^2+1},dx=0
end{align}
answered Dec 20 '18 at 5:55
ZacharyZachary
2,3751214
2,3751214
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047124%2fa-convergent-improper-integral-is-non-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let $sum_{n=0}^{infty} a_n$ be your favorite series that converges to zero. Define $$f(x) = sum_{n=0}^{infty}a_n g(x - n),$$ where $$g(x) = begin{cases} 1 & text{if $0 leq x < 1$} \ 0 & text{otherwise}end{cases}$$
$endgroup$
– Bungo
Dec 20 '18 at 6:01