integrable random variables $X,Y$ such that $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s.
$begingroup$
Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .
Then is it true that $X=Y$ a.s. ?
probability-theory measure-theory random-variables conditional-expectation expected-value
$endgroup$
add a comment |
$begingroup$
Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .
Then is it true that $X=Y$ a.s. ?
probability-theory measure-theory random-variables conditional-expectation expected-value
$endgroup$
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52
add a comment |
$begingroup$
Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .
Then is it true that $X=Y$ a.s. ?
probability-theory measure-theory random-variables conditional-expectation expected-value
$endgroup$
Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .
Then is it true that $X=Y$ a.s. ?
probability-theory measure-theory random-variables conditional-expectation expected-value
probability-theory measure-theory random-variables conditional-expectation expected-value
edited Dec 20 '18 at 4:35
user521337
asked Dec 20 '18 at 3:59
user521337user521337
1,2041417
1,2041417
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52
add a comment |
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.
$endgroup$
add a comment |
$begingroup$
Let $Y=2X$ for any nondegenerate and integrable RV $X.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047138%2fintegrable-random-variables-x-y-such-that-exy-x-a-s-and-eyx-y-a-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.
$endgroup$
add a comment |
$begingroup$
If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.
$endgroup$
add a comment |
$begingroup$
If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.
$endgroup$
If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.
answered Dec 20 '18 at 5:28
Kavi Rama MurthyKavi Rama Murthy
69.1k53169
69.1k53169
add a comment |
add a comment |
$begingroup$
Let $Y=2X$ for any nondegenerate and integrable RV $X.$
$endgroup$
add a comment |
$begingroup$
Let $Y=2X$ for any nondegenerate and integrable RV $X.$
$endgroup$
add a comment |
$begingroup$
Let $Y=2X$ for any nondegenerate and integrable RV $X.$
$endgroup$
Let $Y=2X$ for any nondegenerate and integrable RV $X.$
answered Dec 20 '18 at 5:27
spaceisdarkgreenspaceisdarkgreen
33.6k21753
33.6k21753
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047138%2fintegrable-random-variables-x-y-such-that-exy-x-a-s-and-eyx-y-a-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43
$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47
$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52