integrable random variables $X,Y$ such that $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s.












0












$begingroup$


Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .



Then is it true that $X=Y$ a.s. ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What do you think?
    $endgroup$
    – zoidberg
    Dec 20 '18 at 4:43










  • $begingroup$
    @norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
    $endgroup$
    – user521337
    Dec 20 '18 at 4:47










  • $begingroup$
    @norfair: do you have any ideas ?
    $endgroup$
    – user521337
    Dec 20 '18 at 4:52
















0












$begingroup$


Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .



Then is it true that $X=Y$ a.s. ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What do you think?
    $endgroup$
    – zoidberg
    Dec 20 '18 at 4:43










  • $begingroup$
    @norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
    $endgroup$
    – user521337
    Dec 20 '18 at 4:47










  • $begingroup$
    @norfair: do you have any ideas ?
    $endgroup$
    – user521337
    Dec 20 '18 at 4:52














0












0








0


1



$begingroup$


Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .



Then is it true that $X=Y$ a.s. ?










share|cite|improve this question











$endgroup$




Let $X,Y$ are random variables such that $E(|X|)+E(|Y|)<infty$, and the random variable $E(X|Y)=X$ a.s. and $E(Y|X)=Y$ a.s .



Then is it true that $X=Y$ a.s. ?







probability-theory measure-theory random-variables conditional-expectation expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 4:35







user521337

















asked Dec 20 '18 at 3:59









user521337user521337

1,2041417




1,2041417












  • $begingroup$
    What do you think?
    $endgroup$
    – zoidberg
    Dec 20 '18 at 4:43










  • $begingroup$
    @norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
    $endgroup$
    – user521337
    Dec 20 '18 at 4:47










  • $begingroup$
    @norfair: do you have any ideas ?
    $endgroup$
    – user521337
    Dec 20 '18 at 4:52


















  • $begingroup$
    What do you think?
    $endgroup$
    – zoidberg
    Dec 20 '18 at 4:43










  • $begingroup$
    @norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
    $endgroup$
    – user521337
    Dec 20 '18 at 4:47










  • $begingroup$
    @norfair: do you have any ideas ?
    $endgroup$
    – user521337
    Dec 20 '18 at 4:52
















$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43




$begingroup$
What do you think?
$endgroup$
– zoidberg
Dec 20 '18 at 4:43












$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47




$begingroup$
@norfair: I'm not sure ... the converse is definitely true ... I also know that $X,Y$ integrable and $E(X|Y)=Y$ and $E(Y|X)=X$ a.s. implies $X=Y$ a.s. but I haven't been able to figure out the one I ask ...
$endgroup$
– user521337
Dec 20 '18 at 4:47












$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52




$begingroup$
@norfair: do you have any ideas ?
$endgroup$
– user521337
Dec 20 '18 at 4:52










2 Answers
2






active

oldest

votes


















0












$begingroup$

If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Let $Y=2X$ for any nondegenerate and integrable RV $X.$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047138%2fintegrable-random-variables-x-y-such-that-exy-x-a-s-and-eyx-y-a-s%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.






          share|cite|improve this answer









          $endgroup$



          If $Y=X^{3}$ then the two equations are satisfied but $X =Y$ may not hold.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 20 '18 at 5:28









          Kavi Rama MurthyKavi Rama Murthy

          69.1k53169




          69.1k53169























              0












              $begingroup$

              Let $Y=2X$ for any nondegenerate and integrable RV $X.$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Let $Y=2X$ for any nondegenerate and integrable RV $X.$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Let $Y=2X$ for any nondegenerate and integrable RV $X.$






                  share|cite|improve this answer









                  $endgroup$



                  Let $Y=2X$ for any nondegenerate and integrable RV $X.$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 20 '18 at 5:27









                  spaceisdarkgreenspaceisdarkgreen

                  33.6k21753




                  33.6k21753






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047138%2fintegrable-random-variables-x-y-such-that-exy-x-a-s-and-eyx-y-a-s%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten