Computing a gaussian integral involving both real and imaginary coefficients in a stochastic system












0












$begingroup$


I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.



I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.



I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.



Does anyone have any idea about this?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
    $endgroup$
    – DavidG
    Dec 20 '18 at 4:09


















0












$begingroup$


I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.



I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.



I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.



Does anyone have any idea about this?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
    $endgroup$
    – DavidG
    Dec 20 '18 at 4:09
















0












0








0





$begingroup$


I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.



I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.



I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.



Does anyone have any idea about this?










share|cite|improve this question









$endgroup$




I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.



I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.



I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.



Does anyone have any idea about this?







calculus integration definite-integrals contour-integration complex-integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 20 '18 at 3:37









SchrodingersCatSchrodingersCat

22.4k52862




22.4k52862








  • 1




    $begingroup$
    Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
    $endgroup$
    – DavidG
    Dec 20 '18 at 4:09
















  • 1




    $begingroup$
    Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
    $endgroup$
    – DavidG
    Dec 20 '18 at 4:09










1




1




$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09






$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09












1 Answer
1






active

oldest

votes


















0












$begingroup$

Since $b$ is purely imaginary, this is a Fourier Transform.



Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$



$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047120%2fcomputing-a-gaussian-integral-involving-both-real-and-imaginary-coefficients-in%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Since $b$ is purely imaginary, this is a Fourier Transform.



    Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$



    $$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
    \
    &= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
    \
    &= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
    \
    &= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
    \
    &= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
    \
    &= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
    \
    &= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
    \
    &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
    \
    &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
    \
    &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
    \
    &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
    \
    &= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
    \
    &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
    \
    &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
    \
    &= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
    \
    &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
    \
    &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
    \
    &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
    end{align*}$$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Since $b$ is purely imaginary, this is a Fourier Transform.



      Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$



      $$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
      \
      &= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
      \
      &= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
      \
      &= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
      \
      &= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
      \
      &= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
      \
      &= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
      \
      &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
      \
      &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
      \
      &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
      \
      &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
      \
      &= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
      \
      &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
      \
      &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
      \
      &= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
      \
      &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
      \
      &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
      \
      &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
      end{align*}$$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Since $b$ is purely imaginary, this is a Fourier Transform.



        Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$



        $$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
        \
        &= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
        \
        &= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
        \
        &= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
        \
        &= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
        \
        &= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
        \
        &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
        \
        &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
        \
        &= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
        \
        &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
        \
        &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
        \
        &= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
        end{align*}$$






        share|cite|improve this answer











        $endgroup$



        Since $b$ is purely imaginary, this is a Fourier Transform.



        Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$



        $$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
        \
        &= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
        \
        &= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
        \
        &= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
        \
        &= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
        \
        &= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
        \
        &= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
        \
        &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
        \
        &= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
        \
        &= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
        \
        &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
        \
        &= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
        \
        &= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
        \
        &= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
        end{align*}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 24 '18 at 20:31

























        answered Dec 24 '18 at 14:52









        Andy WallsAndy Walls

        1,764139




        1,764139






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047120%2fcomputing-a-gaussian-integral-involving-both-real-and-imaginary-coefficients-in%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Le Mesnil-Réaume

            Ida-Boy-Ed-Garten

            web3.py web3.isConnected() returns false always