Computing a gaussian integral involving both real and imaginary coefficients in a stochastic system
$begingroup$
I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.
I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.
I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.
Does anyone have any idea about this?
calculus integration definite-integrals contour-integration complex-integration
$endgroup$
add a comment |
$begingroup$
I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.
I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.
I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.
Does anyone have any idea about this?
calculus integration definite-integrals contour-integration complex-integration
$endgroup$
1
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09
add a comment |
$begingroup$
I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.
I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.
I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.
Does anyone have any idea about this?
calculus integration definite-integrals contour-integration complex-integration
$endgroup$
I am stuck with the integral:
$$int_{-infty}^{infty} frac{exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.
I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.
I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.
Does anyone have any idea about this?
calculus integration definite-integrals contour-integration complex-integration
calculus integration definite-integrals contour-integration complex-integration
asked Dec 20 '18 at 3:37
SchrodingersCatSchrodingersCat
22.4k52862
22.4k52862
1
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09
add a comment |
1
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09
1
1
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $b$ is purely imaginary, this is a Fourier Transform.
Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$
$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047120%2fcomputing-a-gaussian-integral-involving-both-real-and-imaginary-coefficients-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $b$ is purely imaginary, this is a Fourier Transform.
Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$
$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Since $b$ is purely imaginary, this is a Fourier Transform.
Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$
$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Since $b$ is purely imaginary, this is a Fourier Transform.
Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$
$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$
$endgroup$
Since $b$ is purely imaginary, this is a Fourier Transform.
Assuming $a>0$, $c>0$ ,and $Re(b) = 0$; make the substitution $- pi s = Im (b)$ or equivalently $-ipi s =b$ or $pi s = ib$
$$begin{align*}displaystyle & int_{-infty}^{infty} frac{expleft[-aleft(x-bright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-aleft(x+ipi sright)^2right]}{1+cx^2} dx\
\
&= int_{-infty}^{infty} frac{expleft[-ax^2+a(pi s)^2-2pi i axsright]}{cx^2+1} dx\
\
&= frac{a^2}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}(ax)^2}}{(ax)^2+frac{a^2}{c}}e^{-2pi i (ax)s} dx\
\
&= frac{a}{c}e^{a(pi s)^2}int_{-infty}^{infty} frac{e^{-frac{1}{a}y^2}}{y^2+frac{a^2}{c}}e^{-2pi iys} dy\
\
&= frac{a}{c}e^{a(pi s)^2}(2pi)^2frac{1}{2left(frac{2pi a}{sqrt{c}}right)}int_{-infty}^{infty} frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pi^2left(frac{y}{pisqrt{a}}right)^2}space e^{-2pi iys} dy\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}space e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} \
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[mathscr{F}left{ frac{2left(frac{2pi a}{sqrt{c}}right)}{(2pi y)^2+left(frac{2pi a}{sqrt{c}}right)^2}right} * mathscr{F}left{ e^{-pileft(frac{y}{sqrt{pi a}}right)^2}right} right]\
\
&= frac{pi}{sqrt{c}}e^{a(pi s)^2}left[e^{-frac{2 a}{sqrt{c}}|pi s|} * sqrt{pi a} e^{-aleft(pi sright)^2}right] \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}int_{-infty}^{infty}e^{-frac{2 a}{sqrt{c}}|pi tau|} e^{-aleft(pi s -pi tauright)^2}space dtau \
\
&= pi sqrt{frac{pi a}{c}}e^{a(pi s)^2}left[int_{-infty}^{0}e^{frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau +int_{0}^{infty}e^{-frac{2 a}{sqrt{c}}pi tau} e^{-aleft(pi s -pi tauright)^2}space dtau right]\
\
&= pi sqrt{frac{pi a}{c}}left(int_{-infty}^{0}expleft[-aleft([pitau]^2-2left[pi s+frac{1}{sqrt{c}}right]pi tauright)right]space dtau +int_{0}^{infty}expleft[-aleft([pitau]^2-2left[pi s-frac{1}{sqrt{c}}right]pi tauright)right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{0}expleft[-aleft(pitau-left[pi s+frac{1}{sqrt{c}}right]right)^2right]space dtau +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{0}^{infty}expleft[-aleft(pitau-left[pi s-frac{1}{sqrt{c}}right]right)^2right]space dtau right)\
\
&= pi sqrt{frac{pi a}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}frac{1}{pisqrt{a}}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= sqrt{frac{pi}{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}int_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)}e^{-u^2}space du +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}int_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}e^{-u^2}space duright)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-infty}^{-sqrt{a}left(pi s+frac{1}{sqrt{c}}right)} +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}mathrm{erf}(u)biggr{|}_{-sqrt{a}left(pi s-frac{1}{sqrt{c}}right)}^{infty}right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{aleft(pi s+frac{1}{sqrt{c}}right)^2}left[mathrm{erf}left(-sqrt{a}left[pi s+frac{1}{sqrt{c}}right]right)+1right] +e^{aleft(pi s-frac{1}{sqrt{c}}right)^2}left[1 -mathrm{erf}left(-sqrt{a}left[pi s-frac{1}{sqrt{c}}right]right)right]right)\
\
&= frac{pi}{2}frac{1}{sqrt{c}}left(e^{left[-sqrt{a}left(ib+frac{1}{sqrt{c}}right)right]^2}left[mathrm{erf}left(-sqrt{a}left[ib+frac{1}{sqrt{c}}right]right)+1right] +e^{left[-sqrt{a}left(ib-frac{1}{sqrt{c}}right)right]^2}left[1 -mathrm{erf}left(-sqrt{a}left[ib-frac{1}{sqrt{c}}right]right)right]right)\
end{align*}$$
edited Dec 24 '18 at 20:31
answered Dec 24 '18 at 14:52
Andy WallsAndy Walls
1,764139
1,764139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047120%2fcomputing-a-gaussian-integral-involving-both-real-and-imaginary-coefficients-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Use Feynman's Trick with $I(t) = int_{-infty}^{infty} frac{ expleft(t cdot -aleft(x - bright)^2 right)}{1 + cx^2}$
$endgroup$
– DavidG
Dec 20 '18 at 4:09