Inequality Question - Homogeneity
$begingroup$
Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$
I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.
inequality summation substitution
$endgroup$
add a comment |
$begingroup$
Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$
I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.
inequality summation substitution
$endgroup$
1
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48
add a comment |
$begingroup$
Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$
I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.
inequality summation substitution
$endgroup$
Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$
I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.
inequality summation substitution
inequality summation substitution
edited Dec 20 '18 at 4:34
Michael Rozenberg
108k1895200
108k1895200
asked Dec 20 '18 at 3:13
BBTBBT
113
113
1
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48
add a comment |
1
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48
1
1
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can make the homogenization by the following way.
Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.
Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$
$endgroup$
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047112%2finequality-question-homogeneity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can make the homogenization by the following way.
Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.
Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$
$endgroup$
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
add a comment |
$begingroup$
You can make the homogenization by the following way.
Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.
Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$
$endgroup$
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
add a comment |
$begingroup$
You can make the homogenization by the following way.
Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.
Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$
$endgroup$
You can make the homogenization by the following way.
Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.
Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$
edited Dec 20 '18 at 9:16
answered Dec 20 '18 at 4:27
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
add a comment |
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047112%2finequality-question-homogeneity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48