Inequality Question - Homogeneity












1












$begingroup$


Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$



I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Which tricks have you tried?
    $endgroup$
    – Alexander Burstein
    Dec 20 '18 at 3:48
















1












$begingroup$


Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$



I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Which tricks have you tried?
    $endgroup$
    – Alexander Burstein
    Dec 20 '18 at 3:48














1












1








1





$begingroup$


Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$



I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.










share|cite|improve this question











$endgroup$




Let $n>3$ and $x_1, x_2, ldots, x_n$ be positive real numbers with $x_1x_2cdots x_n=1$. Prove that
$$
frac{1}{1+x_1+x_1x_2}+frac{1}{1+x_2+x_2x_3}+cdots+frac{1}{1+x_n+x_nx_1}>1.
$$



I’d like to homogenize the degree of the denominator of each term but I ran out of tricks. Any help will be appreciated. Thanks.







inequality summation substitution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 4:34









Michael Rozenberg

108k1895200




108k1895200










asked Dec 20 '18 at 3:13









BBTBBT

113




113








  • 1




    $begingroup$
    Which tricks have you tried?
    $endgroup$
    – Alexander Burstein
    Dec 20 '18 at 3:48














  • 1




    $begingroup$
    Which tricks have you tried?
    $endgroup$
    – Alexander Burstein
    Dec 20 '18 at 3:48








1




1




$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48




$begingroup$
Which tricks have you tried?
$endgroup$
– Alexander Burstein
Dec 20 '18 at 3:48










1 Answer
1






active

oldest

votes


















3












$begingroup$

You can make the homogenization by the following way.



Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.



Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is great. Thanks so much.
    $endgroup$
    – BBT
    Dec 21 '18 at 0:02











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047112%2finequality-question-homogeneity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

You can make the homogenization by the following way.



Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.



Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is great. Thanks so much.
    $endgroup$
    – BBT
    Dec 21 '18 at 0:02
















3












$begingroup$

You can make the homogenization by the following way.



Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.



Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is great. Thanks so much.
    $endgroup$
    – BBT
    Dec 21 '18 at 0:02














3












3








3





$begingroup$

You can make the homogenization by the following way.



Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.



Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$






share|cite|improve this answer











$endgroup$



You can make the homogenization by the following way.



Let $x_1=frac{a_2}{a_1},$ $x_2=frac{a_3}{a_2},$..., $x_{n-1}=frac{a_n}{a_{n-1}},$ where all $a_i>0$, $a_{n+1}=a_1$ and $a_{n+2}=a_2$.



Thus, the condition gives $x_n=frac{a_1}{a_n}$ and
$$sum_{i=1}^nfrac{1}{1+x_1+x_2}=sum_{i=1}^nfrac{1}{1+frac{a_{i+1}}{a_i}+frac{a_{i+2}}{a_i}}=sum_{i=1}^nfrac{a_i}{a_i+a_{i+1}+a_{i+2}}>sum_{i=1}^nfrac{a_i}{a_1+a_2+...+a_n}=1.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 20 '18 at 9:16

























answered Dec 20 '18 at 4:27









Michael RozenbergMichael Rozenberg

108k1895200




108k1895200












  • $begingroup$
    This is great. Thanks so much.
    $endgroup$
    – BBT
    Dec 21 '18 at 0:02


















  • $begingroup$
    This is great. Thanks so much.
    $endgroup$
    – BBT
    Dec 21 '18 at 0:02
















$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02




$begingroup$
This is great. Thanks so much.
$endgroup$
– BBT
Dec 21 '18 at 0:02


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047112%2finequality-question-homogeneity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten