Finding $p$ such that $sumlimits_{n=1}^infty n(1+n^2)^p$ converges. Check my work.
$begingroup$
Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$
Find the values of $p$, such that the series is convergent.
To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,
begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}
If $p=1$, the integral is divergent,
If $p>-1$, the integral is divergent,
If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,
So, I conclude the series is convergent while $p<-1$.
This answer is correct or incorrect?
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$
Find the values of $p$, such that the series is convergent.
To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,
begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}
If $p=1$, the integral is divergent,
If $p>-1$, the integral is divergent,
If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,
So, I conclude the series is convergent while $p<-1$.
This answer is correct or incorrect?
sequences-and-series convergence
$endgroup$
1
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
1
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
add a comment |
$begingroup$
Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$
Find the values of $p$, such that the series is convergent.
To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,
begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}
If $p=1$, the integral is divergent,
If $p>-1$, the integral is divergent,
If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,
So, I conclude the series is convergent while $p<-1$.
This answer is correct or incorrect?
sequences-and-series convergence
$endgroup$
Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$
Find the values of $p$, such that the series is convergent.
To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,
begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}
If $p=1$, the integral is divergent,
If $p>-1$, the integral is divergent,
If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,
So, I conclude the series is convergent while $p<-1$.
This answer is correct or incorrect?
sequences-and-series convergence
sequences-and-series convergence
edited Dec 14 '18 at 2:57
Blue
48.6k870156
48.6k870156
asked Dec 14 '18 at 2:20
Ongky Denny WijayaOngky Denny Wijaya
3678
3678
1
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
1
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
add a comment |
1
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
1
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
1
1
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
1
1
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Alternative:
If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$
$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$
Hence it diverges.
If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$
$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$
Hence, by $p$-series and comparison test, it converges.
$endgroup$
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038840%2ffinding-p-such-that-sum-limits-n-1-infty-n1n2p-converges-check-my%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Alternative:
If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$
$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$
Hence it diverges.
If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$
$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$
Hence, by $p$-series and comparison test, it converges.
$endgroup$
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
add a comment |
$begingroup$
Alternative:
If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$
$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$
Hence it diverges.
If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$
$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$
Hence, by $p$-series and comparison test, it converges.
$endgroup$
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
add a comment |
$begingroup$
Alternative:
If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$
$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$
Hence it diverges.
If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$
$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$
Hence, by $p$-series and comparison test, it converges.
$endgroup$
Alternative:
If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$
$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$
Hence it diverges.
If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$
$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$
Hence, by $p$-series and comparison test, it converges.
answered Dec 14 '18 at 2:47
Siong Thye GohSiong Thye Goh
102k1466118
102k1466118
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
add a comment |
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038840%2ffinding-p-such-that-sum-limits-n-1-infty-n1n2p-converges-check-my%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26
1
$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34
$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34