Limits of the function $[x] = y$, where $y$ is the bigger integer smaller or equal $x$?
$begingroup$
I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):
$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$
(Image that replaced math).
However I do not understand why that is the case.
real-analysis calculus limits
$endgroup$
add a comment |
$begingroup$
I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):
$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$
(Image that replaced math).
However I do not understand why that is the case.
real-analysis calculus limits
$endgroup$
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00
add a comment |
$begingroup$
I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):
$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$
(Image that replaced math).
However I do not understand why that is the case.
real-analysis calculus limits
$endgroup$
I am reading a notes in Analysis and I find this limit ($a$ and $b$ are positive):
$$lim_{xto0^+}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^+}{frac bxleft[frac xaright]}=0\
lim_{xto0^-}{frac xaleft[frac bxright]}=frac baqquadlim_{xto0^-}{frac bxleft[frac xaright]}=infty$$
(Image that replaced math).
However I do not understand why that is the case.
real-analysis calculus limits
real-analysis calculus limits
edited Dec 14 '18 at 7:16
manooooh
6271517
6271517
asked Dec 14 '18 at 2:45
Maria GuthierMaria Guthier
887
887
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00
add a comment |
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.
$endgroup$
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038865%2flimits-of-the-function-x-y-where-y-is-the-bigger-integer-smaller-or-equ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.
$endgroup$
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
add a comment |
$begingroup$
Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.
$endgroup$
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
add a comment |
$begingroup$
Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.
$endgroup$
Hint: As the comment above suggests you can use the fact that for all $cinBbb R$, $cleqslant[c]lt c+1$ hence $$frac{b}{x}leqslantleft[frac{b}{x}right]lt frac{b}{x}+1.$$ When we're approaching $0$ from the right we have $xgt 0$ hence multiplying both sides by $frac xa$ yields, $$frac{x}{a}frac{b}{x}leqslantfrac{x}{a}left[frac{b}{x}right]lt frac{x}{a}left(dfrac{b}{x}+1right).$$ After simplifying use the squeeze theorem. Do the same for the other cases.
answered Dec 14 '18 at 6:57
Stupid Questions IncStupid Questions Inc
7010
7010
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
add a comment |
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
But in the second case I end with $frac{a}{b} leq frac{b}{x} [frac{x}{a}] < infty$
$endgroup$
– Maria Guthier
Dec 14 '18 at 15:34
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@MariaGuthier So it seems you already got your answer in math.stackexchange.com/questions/3039534/… right :) ?
$endgroup$
– Stupid Questions Inc
Dec 15 '18 at 7:28
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@StupidQuestionsInc Somewhat off-topic: where did you find your profile picture ?
$endgroup$
– Gabriel Romon
Dec 22 '18 at 20:10
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
$begingroup$
@GabrielRomon somewhere on twitter
$endgroup$
– Stupid Questions Inc
Dec 23 '18 at 7:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038865%2flimits-of-the-function-x-y-where-y-is-the-bigger-integer-smaller-or-equ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try to use $y leqslant [y] < y+1$ and squeeze theorem.
$endgroup$
– xbh
Dec 14 '18 at 2:46
$begingroup$
I still don't see it
$endgroup$
– Maria Guthier
Dec 14 '18 at 3:00