Some sort of commutativity of circulant matrices with a certain transformation












0












$begingroup$


Given a vector $v = (a_0, a_1, a_2, ... , a_n)$, we call a $k$-circulant matrix $C_k(v)$, where $k geq n$, the following $k*k$ matrix :
$$ C_k(v)= begin{bmatrix}
a_1 & a_2 & ... & a_n & 0 & ... & 0 \
0 & a_1 & a_2 & ... & a_n & 0 & ... \
cdot & & & & cdot & & \
& cdot & & & & cdot & \
& & cdot & & & & cdot \
a_3 & a_4 & ... & a_n & 0 & ... & 0 \
a_2 & a_3 & a_4 & ... & a_n & 0 & ...
end{bmatrix} $$

(basically, you pad the vector with zeros and then you form a circulant matrix with it.)



For simplicity, given two natural numbers $n,k$, define the block-matrix $$I_{n,k} = begin{bmatrix}
I_n & I_n & ... & I_n
end{bmatrix} $$

where $I_n$ repeats k times (I_n is the identity matrix of order $n$.)



I found out that, given a vector $v = (a_1,a_2,...,a_n)$ of length $n$ and a natural number $k$, we have the following relation:
$$ C_n(v) cdot I_{n,k} = I_{n,k}cdot C_{nk}(v)$$



This really isn't that hard to prove, since if for the vector $v$ we consider the following matrices:
$$ B = begin{bmatrix}
0 & 0 & 0 & 0 &... & 0 \
a_n & 0 & 0 & 0 & ... & 0 \
a_{n - 1}& a_n & 0 & 0 & ... & 0 \
a_{n - 2} & a_{n-1} & a_n & 0 & ... & 0 \
& & cdot & & & \
& & &cdot & & \
& & & & cdot & \
a_{2} & a_{3} & ... & a_{n-1} & a_n& 0 \
end{bmatrix} $$



$$A = begin{bmatrix}
a_1 & a_2 & a_3 & ... & a_n \
0 & a_1 & a_2 & ... & a_{n-1} \
& & cdot \
& & & cdot \
& & & & cdot \
0 & 0 & ... & 0 & a_1
end{bmatrix}$$



we observe that $C_n(v) = A+B$,
$$C_{n,k} = begin{bmatrix}
A & B & 0 & 0 & ... & 0\
0 & A & B & 0 & ... & 0\
&& cdot \
&&& cdot \
&&&& cdot \
B & 0 & 0 & 0 & ... & A
end{bmatrix}, $$



and so the relation to prove becomes
$$ [ A + B ] cdot begin{bmatrix}
I_n & I_n & ... & I_n
end{bmatrix} = begin{bmatrix}
I_n & I_n & ... & I_n
end{bmatrix} cdot begin{bmatrix}
A & B & 0 & 0 & ... & 0\
0 & A & B & 0 & ... & 0\
&& cdot \
&&& cdot \
&&&& cdot \
B & 0 & 0 & 0 & ... & A
end{bmatrix}, $$



which is obvious.



However, here comes the question: I have tested that given two vectors $v = (a_1, a_2, a_3, ... a_n) $ and $w = (b_1, b_2, ... , b_n)$, the following is also true:
$$ C_n(v) cdot C_n(w) cdot I_{n,k} = I_{n,k} cdot C_{nk}(v) cdot C_{nk}(w) $$



I haven't been able to prove this one; I know that the product of two circulant matrices is also a circulant matrix, but it doesn't seem like there is a vector $z = (c_1,c_2,...,c_n)$ such that $C_n(v) cdot C_n(w) = C_n(z)$ and $ C_{nk}(v) cdot C_{nk}(w) = C_{nk}(z)$.



Any ideas would be appreciated.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Given a vector $v = (a_0, a_1, a_2, ... , a_n)$, we call a $k$-circulant matrix $C_k(v)$, where $k geq n$, the following $k*k$ matrix :
    $$ C_k(v)= begin{bmatrix}
    a_1 & a_2 & ... & a_n & 0 & ... & 0 \
    0 & a_1 & a_2 & ... & a_n & 0 & ... \
    cdot & & & & cdot & & \
    & cdot & & & & cdot & \
    & & cdot & & & & cdot \
    a_3 & a_4 & ... & a_n & 0 & ... & 0 \
    a_2 & a_3 & a_4 & ... & a_n & 0 & ...
    end{bmatrix} $$

    (basically, you pad the vector with zeros and then you form a circulant matrix with it.)



    For simplicity, given two natural numbers $n,k$, define the block-matrix $$I_{n,k} = begin{bmatrix}
    I_n & I_n & ... & I_n
    end{bmatrix} $$

    where $I_n$ repeats k times (I_n is the identity matrix of order $n$.)



    I found out that, given a vector $v = (a_1,a_2,...,a_n)$ of length $n$ and a natural number $k$, we have the following relation:
    $$ C_n(v) cdot I_{n,k} = I_{n,k}cdot C_{nk}(v)$$



    This really isn't that hard to prove, since if for the vector $v$ we consider the following matrices:
    $$ B = begin{bmatrix}
    0 & 0 & 0 & 0 &... & 0 \
    a_n & 0 & 0 & 0 & ... & 0 \
    a_{n - 1}& a_n & 0 & 0 & ... & 0 \
    a_{n - 2} & a_{n-1} & a_n & 0 & ... & 0 \
    & & cdot & & & \
    & & &cdot & & \
    & & & & cdot & \
    a_{2} & a_{3} & ... & a_{n-1} & a_n& 0 \
    end{bmatrix} $$



    $$A = begin{bmatrix}
    a_1 & a_2 & a_3 & ... & a_n \
    0 & a_1 & a_2 & ... & a_{n-1} \
    & & cdot \
    & & & cdot \
    & & & & cdot \
    0 & 0 & ... & 0 & a_1
    end{bmatrix}$$



    we observe that $C_n(v) = A+B$,
    $$C_{n,k} = begin{bmatrix}
    A & B & 0 & 0 & ... & 0\
    0 & A & B & 0 & ... & 0\
    && cdot \
    &&& cdot \
    &&&& cdot \
    B & 0 & 0 & 0 & ... & A
    end{bmatrix}, $$



    and so the relation to prove becomes
    $$ [ A + B ] cdot begin{bmatrix}
    I_n & I_n & ... & I_n
    end{bmatrix} = begin{bmatrix}
    I_n & I_n & ... & I_n
    end{bmatrix} cdot begin{bmatrix}
    A & B & 0 & 0 & ... & 0\
    0 & A & B & 0 & ... & 0\
    && cdot \
    &&& cdot \
    &&&& cdot \
    B & 0 & 0 & 0 & ... & A
    end{bmatrix}, $$



    which is obvious.



    However, here comes the question: I have tested that given two vectors $v = (a_1, a_2, a_3, ... a_n) $ and $w = (b_1, b_2, ... , b_n)$, the following is also true:
    $$ C_n(v) cdot C_n(w) cdot I_{n,k} = I_{n,k} cdot C_{nk}(v) cdot C_{nk}(w) $$



    I haven't been able to prove this one; I know that the product of two circulant matrices is also a circulant matrix, but it doesn't seem like there is a vector $z = (c_1,c_2,...,c_n)$ such that $C_n(v) cdot C_n(w) = C_n(z)$ and $ C_{nk}(v) cdot C_{nk}(w) = C_{nk}(z)$.



    Any ideas would be appreciated.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Given a vector $v = (a_0, a_1, a_2, ... , a_n)$, we call a $k$-circulant matrix $C_k(v)$, where $k geq n$, the following $k*k$ matrix :
      $$ C_k(v)= begin{bmatrix}
      a_1 & a_2 & ... & a_n & 0 & ... & 0 \
      0 & a_1 & a_2 & ... & a_n & 0 & ... \
      cdot & & & & cdot & & \
      & cdot & & & & cdot & \
      & & cdot & & & & cdot \
      a_3 & a_4 & ... & a_n & 0 & ... & 0 \
      a_2 & a_3 & a_4 & ... & a_n & 0 & ...
      end{bmatrix} $$

      (basically, you pad the vector with zeros and then you form a circulant matrix with it.)



      For simplicity, given two natural numbers $n,k$, define the block-matrix $$I_{n,k} = begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} $$

      where $I_n$ repeats k times (I_n is the identity matrix of order $n$.)



      I found out that, given a vector $v = (a_1,a_2,...,a_n)$ of length $n$ and a natural number $k$, we have the following relation:
      $$ C_n(v) cdot I_{n,k} = I_{n,k}cdot C_{nk}(v)$$



      This really isn't that hard to prove, since if for the vector $v$ we consider the following matrices:
      $$ B = begin{bmatrix}
      0 & 0 & 0 & 0 &... & 0 \
      a_n & 0 & 0 & 0 & ... & 0 \
      a_{n - 1}& a_n & 0 & 0 & ... & 0 \
      a_{n - 2} & a_{n-1} & a_n & 0 & ... & 0 \
      & & cdot & & & \
      & & &cdot & & \
      & & & & cdot & \
      a_{2} & a_{3} & ... & a_{n-1} & a_n& 0 \
      end{bmatrix} $$



      $$A = begin{bmatrix}
      a_1 & a_2 & a_3 & ... & a_n \
      0 & a_1 & a_2 & ... & a_{n-1} \
      & & cdot \
      & & & cdot \
      & & & & cdot \
      0 & 0 & ... & 0 & a_1
      end{bmatrix}$$



      we observe that $C_n(v) = A+B$,
      $$C_{n,k} = begin{bmatrix}
      A & B & 0 & 0 & ... & 0\
      0 & A & B & 0 & ... & 0\
      && cdot \
      &&& cdot \
      &&&& cdot \
      B & 0 & 0 & 0 & ... & A
      end{bmatrix}, $$



      and so the relation to prove becomes
      $$ [ A + B ] cdot begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} = begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} cdot begin{bmatrix}
      A & B & 0 & 0 & ... & 0\
      0 & A & B & 0 & ... & 0\
      && cdot \
      &&& cdot \
      &&&& cdot \
      B & 0 & 0 & 0 & ... & A
      end{bmatrix}, $$



      which is obvious.



      However, here comes the question: I have tested that given two vectors $v = (a_1, a_2, a_3, ... a_n) $ and $w = (b_1, b_2, ... , b_n)$, the following is also true:
      $$ C_n(v) cdot C_n(w) cdot I_{n,k} = I_{n,k} cdot C_{nk}(v) cdot C_{nk}(w) $$



      I haven't been able to prove this one; I know that the product of two circulant matrices is also a circulant matrix, but it doesn't seem like there is a vector $z = (c_1,c_2,...,c_n)$ such that $C_n(v) cdot C_n(w) = C_n(z)$ and $ C_{nk}(v) cdot C_{nk}(w) = C_{nk}(z)$.



      Any ideas would be appreciated.










      share|cite|improve this question









      $endgroup$




      Given a vector $v = (a_0, a_1, a_2, ... , a_n)$, we call a $k$-circulant matrix $C_k(v)$, where $k geq n$, the following $k*k$ matrix :
      $$ C_k(v)= begin{bmatrix}
      a_1 & a_2 & ... & a_n & 0 & ... & 0 \
      0 & a_1 & a_2 & ... & a_n & 0 & ... \
      cdot & & & & cdot & & \
      & cdot & & & & cdot & \
      & & cdot & & & & cdot \
      a_3 & a_4 & ... & a_n & 0 & ... & 0 \
      a_2 & a_3 & a_4 & ... & a_n & 0 & ...
      end{bmatrix} $$

      (basically, you pad the vector with zeros and then you form a circulant matrix with it.)



      For simplicity, given two natural numbers $n,k$, define the block-matrix $$I_{n,k} = begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} $$

      where $I_n$ repeats k times (I_n is the identity matrix of order $n$.)



      I found out that, given a vector $v = (a_1,a_2,...,a_n)$ of length $n$ and a natural number $k$, we have the following relation:
      $$ C_n(v) cdot I_{n,k} = I_{n,k}cdot C_{nk}(v)$$



      This really isn't that hard to prove, since if for the vector $v$ we consider the following matrices:
      $$ B = begin{bmatrix}
      0 & 0 & 0 & 0 &... & 0 \
      a_n & 0 & 0 & 0 & ... & 0 \
      a_{n - 1}& a_n & 0 & 0 & ... & 0 \
      a_{n - 2} & a_{n-1} & a_n & 0 & ... & 0 \
      & & cdot & & & \
      & & &cdot & & \
      & & & & cdot & \
      a_{2} & a_{3} & ... & a_{n-1} & a_n& 0 \
      end{bmatrix} $$



      $$A = begin{bmatrix}
      a_1 & a_2 & a_3 & ... & a_n \
      0 & a_1 & a_2 & ... & a_{n-1} \
      & & cdot \
      & & & cdot \
      & & & & cdot \
      0 & 0 & ... & 0 & a_1
      end{bmatrix}$$



      we observe that $C_n(v) = A+B$,
      $$C_{n,k} = begin{bmatrix}
      A & B & 0 & 0 & ... & 0\
      0 & A & B & 0 & ... & 0\
      && cdot \
      &&& cdot \
      &&&& cdot \
      B & 0 & 0 & 0 & ... & A
      end{bmatrix}, $$



      and so the relation to prove becomes
      $$ [ A + B ] cdot begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} = begin{bmatrix}
      I_n & I_n & ... & I_n
      end{bmatrix} cdot begin{bmatrix}
      A & B & 0 & 0 & ... & 0\
      0 & A & B & 0 & ... & 0\
      && cdot \
      &&& cdot \
      &&&& cdot \
      B & 0 & 0 & 0 & ... & A
      end{bmatrix}, $$



      which is obvious.



      However, here comes the question: I have tested that given two vectors $v = (a_1, a_2, a_3, ... a_n) $ and $w = (b_1, b_2, ... , b_n)$, the following is also true:
      $$ C_n(v) cdot C_n(w) cdot I_{n,k} = I_{n,k} cdot C_{nk}(v) cdot C_{nk}(w) $$



      I haven't been able to prove this one; I know that the product of two circulant matrices is also a circulant matrix, but it doesn't seem like there is a vector $z = (c_1,c_2,...,c_n)$ such that $C_n(v) cdot C_n(w) = C_n(z)$ and $ C_{nk}(v) cdot C_{nk}(w) = C_{nk}(z)$.



      Any ideas would be appreciated.







      linear-algebra linear-transformations circulant-matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 1:10









      Tanny SiebenTanny Sieben

      36318




      36318






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I figured it out. Basically we have
          $$C_n(w) cdot begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot C_{nk} (w) $$



          By splitting $C_{nk} (w) $ into matrices $X$ and $Y$, we want to show that
          $$begin{bmatrix} C_{n}(w)C_n(v) & C_{n}(w) C_n(v) & ... & C_{n}(w)C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot begin{bmatrix} X & Y & 0 & 0 & ... & 0 \ 0 & X & Y & 0 & ... & 0 \ &&cdot \ &&&cdot \ &&&&cdot \ Y & 0 & 0 & 0 & ... & X end{bmatrix} ,$$
          which is obvious, since $ X+Y = C_n(w)$,






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038803%2fsome-sort-of-commutativity-of-circulant-matrices-with-a-certain-transformation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            I figured it out. Basically we have
            $$C_n(w) cdot begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot C_{nk} (w) $$



            By splitting $C_{nk} (w) $ into matrices $X$ and $Y$, we want to show that
            $$begin{bmatrix} C_{n}(w)C_n(v) & C_{n}(w) C_n(v) & ... & C_{n}(w)C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot begin{bmatrix} X & Y & 0 & 0 & ... & 0 \ 0 & X & Y & 0 & ... & 0 \ &&cdot \ &&&cdot \ &&&&cdot \ Y & 0 & 0 & 0 & ... & X end{bmatrix} ,$$
            which is obvious, since $ X+Y = C_n(w)$,






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              I figured it out. Basically we have
              $$C_n(w) cdot begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot C_{nk} (w) $$



              By splitting $C_{nk} (w) $ into matrices $X$ and $Y$, we want to show that
              $$begin{bmatrix} C_{n}(w)C_n(v) & C_{n}(w) C_n(v) & ... & C_{n}(w)C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot begin{bmatrix} X & Y & 0 & 0 & ... & 0 \ 0 & X & Y & 0 & ... & 0 \ &&cdot \ &&&cdot \ &&&&cdot \ Y & 0 & 0 & 0 & ... & X end{bmatrix} ,$$
              which is obvious, since $ X+Y = C_n(w)$,






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                I figured it out. Basically we have
                $$C_n(w) cdot begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot C_{nk} (w) $$



                By splitting $C_{nk} (w) $ into matrices $X$ and $Y$, we want to show that
                $$begin{bmatrix} C_{n}(w)C_n(v) & C_{n}(w) C_n(v) & ... & C_{n}(w)C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot begin{bmatrix} X & Y & 0 & 0 & ... & 0 \ 0 & X & Y & 0 & ... & 0 \ &&cdot \ &&&cdot \ &&&&cdot \ Y & 0 & 0 & 0 & ... & X end{bmatrix} ,$$
                which is obvious, since $ X+Y = C_n(w)$,






                share|cite|improve this answer









                $endgroup$



                I figured it out. Basically we have
                $$C_n(w) cdot begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot C_{nk} (w) $$



                By splitting $C_{nk} (w) $ into matrices $X$ and $Y$, we want to show that
                $$begin{bmatrix} C_{n}(w)C_n(v) & C_{n}(w) C_n(v) & ... & C_{n}(w)C_n(v) end{bmatrix} = begin{bmatrix} C_n(v) & C_n(v) & ... & C_n(v) end{bmatrix} cdot begin{bmatrix} X & Y & 0 & 0 & ... & 0 \ 0 & X & Y & 0 & ... & 0 \ &&cdot \ &&&cdot \ &&&&cdot \ Y & 0 & 0 & 0 & ... & X end{bmatrix} ,$$
                which is obvious, since $ X+Y = C_n(w)$,







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 14 '18 at 8:02









                Tanny SiebenTanny Sieben

                36318




                36318






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038803%2fsome-sort-of-commutativity-of-circulant-matrices-with-a-certain-transformation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten

                    web3.py web3.isConnected() returns false always