finding value of integral












3












$begingroup$


$$int_0^{pi/2} (cos x)^{2011} sin (2013 x) dx $$



The value is given to be $frac{1}{2012}$. I am while solving using by parts, but one term is remaining like $frac{1}{2}$, then $frac{1}{3},$ and so on. Kindly help.



what i am stuck at is following.



$$I(m,n) =int_0^{pi/2} (cos x)^{m} sin (n x) dx $$
$$I(m,n)= frac {1}{m+n} + frac{m}{m+n}I(m-1,n-1)$$
after deriving this i am not able to proceed further










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    why downvoting?
    $endgroup$
    – maveric
    Dec 15 '18 at 8:45






  • 3




    $begingroup$
    In this case, reasons for the down- and closevotes would be helpful. I do not see one.
    $endgroup$
    – Peter
    Dec 15 '18 at 9:20










  • $begingroup$
    What's meant by stuck? You can not derive that or don't know how to utilize that
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 9:37










  • $begingroup$
    i have reached till this step. i am able to proceed further to answer which is 1/2011
    $endgroup$
    – maveric
    Dec 15 '18 at 9:38










  • $begingroup$
    This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
    $endgroup$
    – Jean Marie
    Dec 15 '18 at 9:51
















3












$begingroup$


$$int_0^{pi/2} (cos x)^{2011} sin (2013 x) dx $$



The value is given to be $frac{1}{2012}$. I am while solving using by parts, but one term is remaining like $frac{1}{2}$, then $frac{1}{3},$ and so on. Kindly help.



what i am stuck at is following.



$$I(m,n) =int_0^{pi/2} (cos x)^{m} sin (n x) dx $$
$$I(m,n)= frac {1}{m+n} + frac{m}{m+n}I(m-1,n-1)$$
after deriving this i am not able to proceed further










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    why downvoting?
    $endgroup$
    – maveric
    Dec 15 '18 at 8:45






  • 3




    $begingroup$
    In this case, reasons for the down- and closevotes would be helpful. I do not see one.
    $endgroup$
    – Peter
    Dec 15 '18 at 9:20










  • $begingroup$
    What's meant by stuck? You can not derive that or don't know how to utilize that
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 9:37










  • $begingroup$
    i have reached till this step. i am able to proceed further to answer which is 1/2011
    $endgroup$
    – maveric
    Dec 15 '18 at 9:38










  • $begingroup$
    This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
    $endgroup$
    – Jean Marie
    Dec 15 '18 at 9:51














3












3








3


1



$begingroup$


$$int_0^{pi/2} (cos x)^{2011} sin (2013 x) dx $$



The value is given to be $frac{1}{2012}$. I am while solving using by parts, but one term is remaining like $frac{1}{2}$, then $frac{1}{3},$ and so on. Kindly help.



what i am stuck at is following.



$$I(m,n) =int_0^{pi/2} (cos x)^{m} sin (n x) dx $$
$$I(m,n)= frac {1}{m+n} + frac{m}{m+n}I(m-1,n-1)$$
after deriving this i am not able to proceed further










share|cite|improve this question











$endgroup$




$$int_0^{pi/2} (cos x)^{2011} sin (2013 x) dx $$



The value is given to be $frac{1}{2012}$. I am while solving using by parts, but one term is remaining like $frac{1}{2}$, then $frac{1}{3},$ and so on. Kindly help.



what i am stuck at is following.



$$I(m,n) =int_0^{pi/2} (cos x)^{m} sin (n x) dx $$
$$I(m,n)= frac {1}{m+n} + frac{m}{m+n}I(m-1,n-1)$$
after deriving this i am not able to proceed further







calculus definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 15 '18 at 10:26







maveric

















asked Dec 15 '18 at 8:42









mavericmaveric

88012




88012








  • 4




    $begingroup$
    why downvoting?
    $endgroup$
    – maveric
    Dec 15 '18 at 8:45






  • 3




    $begingroup$
    In this case, reasons for the down- and closevotes would be helpful. I do not see one.
    $endgroup$
    – Peter
    Dec 15 '18 at 9:20










  • $begingroup$
    What's meant by stuck? You can not derive that or don't know how to utilize that
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 9:37










  • $begingroup$
    i have reached till this step. i am able to proceed further to answer which is 1/2011
    $endgroup$
    – maveric
    Dec 15 '18 at 9:38










  • $begingroup$
    This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
    $endgroup$
    – Jean Marie
    Dec 15 '18 at 9:51














  • 4




    $begingroup$
    why downvoting?
    $endgroup$
    – maveric
    Dec 15 '18 at 8:45






  • 3




    $begingroup$
    In this case, reasons for the down- and closevotes would be helpful. I do not see one.
    $endgroup$
    – Peter
    Dec 15 '18 at 9:20










  • $begingroup$
    What's meant by stuck? You can not derive that or don't know how to utilize that
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 9:37










  • $begingroup$
    i have reached till this step. i am able to proceed further to answer which is 1/2011
    $endgroup$
    – maveric
    Dec 15 '18 at 9:38










  • $begingroup$
    This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
    $endgroup$
    – Jean Marie
    Dec 15 '18 at 9:51








4




4




$begingroup$
why downvoting?
$endgroup$
– maveric
Dec 15 '18 at 8:45




$begingroup$
why downvoting?
$endgroup$
– maveric
Dec 15 '18 at 8:45




3




3




$begingroup$
In this case, reasons for the down- and closevotes would be helpful. I do not see one.
$endgroup$
– Peter
Dec 15 '18 at 9:20




$begingroup$
In this case, reasons for the down- and closevotes would be helpful. I do not see one.
$endgroup$
– Peter
Dec 15 '18 at 9:20












$begingroup$
What's meant by stuck? You can not derive that or don't know how to utilize that
$endgroup$
– lab bhattacharjee
Dec 15 '18 at 9:37




$begingroup$
What's meant by stuck? You can not derive that or don't know how to utilize that
$endgroup$
– lab bhattacharjee
Dec 15 '18 at 9:37












$begingroup$
i have reached till this step. i am able to proceed further to answer which is 1/2011
$endgroup$
– maveric
Dec 15 '18 at 9:38




$begingroup$
i have reached till this step. i am able to proceed further to answer which is 1/2011
$endgroup$
– maveric
Dec 15 '18 at 9:38












$begingroup$
This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
$endgroup$
– Jean Marie
Dec 15 '18 at 9:51




$begingroup$
This double recurrence relationship looks a deadend. I have found the general formula $$int_0^{pi/2} (cos x)^{nu-2} sin (nu x) dx=dfrac{1}{nu-1} $$ in a book. It can help to buid a more sympathetic recurrence...
$endgroup$
– Jean Marie
Dec 15 '18 at 9:51










2 Answers
2






active

oldest

votes


















4












$begingroup$

Hint:



$n=m+2implies$ $$I_{(m,m+2)}=dfrac1{2m+2}+dfrac m{2m+2}I_{(m-1,m+1)}$$



$I_{(0,2)}=1$



$m=1implies$ $$I_{(1,3)}=dfrac14+dfrac14I_{(0,2)}=dfrac12$$



$m=2implies$ $$I_{(2,4)}=dfrac16+dfrac13I_{(1,3)}=dfrac13$$



Use induction for $I_{(m-1,m+1)}=dfrac2{m-1+m+1}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:13










  • $begingroup$
    @maveric, Yes because of the difference in powers.
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:16










  • $begingroup$
    could you ellaborate on induction ?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:27






  • 1




    $begingroup$
    @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:30



















2












$begingroup$

Note that
$$
begin{align}
I(m,n)
&=int_0^{pi/2}cos^m(x)sin(nx),mathrm{d}xtag1\
&=int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}x+int_0^{pi/2}cos^m(x)cos((n-1)x)sin(x),mathrm{d}xtag2\
&=I(m+1,n-1)-frac1{m+1}int_0^{pi/2}cos((n-1)x),mathrm{d}cos^{m+1}(x)tag3\
&=I(m+1,n-1)+frac1{m+1}-frac{n-1}{m+1}int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}xtag4\
&=frac{m-n+2}{m+1},I(m+1,n-1)+frac1{m+1}tag5
end{align}
$$

Explanation:
$(1)$: define $I(m,n)$
$(2)$: $sin(nx)=sin((n-1)x)cos(x)+cos((n-1)x)sin(x)$
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: simplify



Plug in $m=2011$ and $n=2013$ and see what happens.



However, this gives the answer $frac1{2012}$, which is confirmed by Mathematica.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040277%2ffinding-value-of-integral%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Hint:



    $n=m+2implies$ $$I_{(m,m+2)}=dfrac1{2m+2}+dfrac m{2m+2}I_{(m-1,m+1)}$$



    $I_{(0,2)}=1$



    $m=1implies$ $$I_{(1,3)}=dfrac14+dfrac14I_{(0,2)}=dfrac12$$



    $m=2implies$ $$I_{(2,4)}=dfrac16+dfrac13I_{(1,3)}=dfrac13$$



    Use induction for $I_{(m-1,m+1)}=dfrac2{m-1+m+1}$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:13










    • $begingroup$
      @maveric, Yes because of the difference in powers.
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:16










    • $begingroup$
      could you ellaborate on induction ?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:27






    • 1




      $begingroup$
      @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:30
















    4












    $begingroup$

    Hint:



    $n=m+2implies$ $$I_{(m,m+2)}=dfrac1{2m+2}+dfrac m{2m+2}I_{(m-1,m+1)}$$



    $I_{(0,2)}=1$



    $m=1implies$ $$I_{(1,3)}=dfrac14+dfrac14I_{(0,2)}=dfrac12$$



    $m=2implies$ $$I_{(2,4)}=dfrac16+dfrac13I_{(1,3)}=dfrac13$$



    Use induction for $I_{(m-1,m+1)}=dfrac2{m-1+m+1}$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:13










    • $begingroup$
      @maveric, Yes because of the difference in powers.
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:16










    • $begingroup$
      could you ellaborate on induction ?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:27






    • 1




      $begingroup$
      @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:30














    4












    4








    4





    $begingroup$

    Hint:



    $n=m+2implies$ $$I_{(m,m+2)}=dfrac1{2m+2}+dfrac m{2m+2}I_{(m-1,m+1)}$$



    $I_{(0,2)}=1$



    $m=1implies$ $$I_{(1,3)}=dfrac14+dfrac14I_{(0,2)}=dfrac12$$



    $m=2implies$ $$I_{(2,4)}=dfrac16+dfrac13I_{(1,3)}=dfrac13$$



    Use induction for $I_{(m-1,m+1)}=dfrac2{m-1+m+1}$






    share|cite|improve this answer









    $endgroup$



    Hint:



    $n=m+2implies$ $$I_{(m,m+2)}=dfrac1{2m+2}+dfrac m{2m+2}I_{(m-1,m+1)}$$



    $I_{(0,2)}=1$



    $m=1implies$ $$I_{(1,3)}=dfrac14+dfrac14I_{(0,2)}=dfrac12$$



    $m=2implies$ $$I_{(2,4)}=dfrac16+dfrac13I_{(1,3)}=dfrac13$$



    Use induction for $I_{(m-1,m+1)}=dfrac2{m-1+m+1}$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 15 '18 at 9:49









    lab bhattacharjeelab bhattacharjee

    226k15157275




    226k15157275












    • $begingroup$
      why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:13










    • $begingroup$
      @maveric, Yes because of the difference in powers.
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:16










    • $begingroup$
      could you ellaborate on induction ?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:27






    • 1




      $begingroup$
      @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:30


















    • $begingroup$
      why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:13










    • $begingroup$
      @maveric, Yes because of the difference in powers.
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:16










    • $begingroup$
      could you ellaborate on induction ?
      $endgroup$
      – maveric
      Dec 15 '18 at 10:27






    • 1




      $begingroup$
      @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
      $endgroup$
      – lab bhattacharjee
      Dec 15 '18 at 10:30
















    $begingroup$
    why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:13




    $begingroup$
    why did you think to replace n= m+2 ? is it because of powers stated? can we solve for any difference?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:13












    $begingroup$
    @maveric, Yes because of the difference in powers.
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:16




    $begingroup$
    @maveric, Yes because of the difference in powers.
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:16












    $begingroup$
    could you ellaborate on induction ?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:27




    $begingroup$
    could you ellaborate on induction ?
    $endgroup$
    – maveric
    Dec 15 '18 at 10:27




    1




    1




    $begingroup$
    @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:30




    $begingroup$
    @If $I_{(m-1,m+1)}=dfrac1m;$ hold true for $m=n$ Establish the same for $m=n+1$
    $endgroup$
    – lab bhattacharjee
    Dec 15 '18 at 10:30











    2












    $begingroup$

    Note that
    $$
    begin{align}
    I(m,n)
    &=int_0^{pi/2}cos^m(x)sin(nx),mathrm{d}xtag1\
    &=int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}x+int_0^{pi/2}cos^m(x)cos((n-1)x)sin(x),mathrm{d}xtag2\
    &=I(m+1,n-1)-frac1{m+1}int_0^{pi/2}cos((n-1)x),mathrm{d}cos^{m+1}(x)tag3\
    &=I(m+1,n-1)+frac1{m+1}-frac{n-1}{m+1}int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}xtag4\
    &=frac{m-n+2}{m+1},I(m+1,n-1)+frac1{m+1}tag5
    end{align}
    $$

    Explanation:
    $(1)$: define $I(m,n)$
    $(2)$: $sin(nx)=sin((n-1)x)cos(x)+cos((n-1)x)sin(x)$
    $(3)$: prepare to integrate by parts
    $(4)$: integrate by parts
    $(5)$: simplify



    Plug in $m=2011$ and $n=2013$ and see what happens.



    However, this gives the answer $frac1{2012}$, which is confirmed by Mathematica.






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Note that
      $$
      begin{align}
      I(m,n)
      &=int_0^{pi/2}cos^m(x)sin(nx),mathrm{d}xtag1\
      &=int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}x+int_0^{pi/2}cos^m(x)cos((n-1)x)sin(x),mathrm{d}xtag2\
      &=I(m+1,n-1)-frac1{m+1}int_0^{pi/2}cos((n-1)x),mathrm{d}cos^{m+1}(x)tag3\
      &=I(m+1,n-1)+frac1{m+1}-frac{n-1}{m+1}int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}xtag4\
      &=frac{m-n+2}{m+1},I(m+1,n-1)+frac1{m+1}tag5
      end{align}
      $$

      Explanation:
      $(1)$: define $I(m,n)$
      $(2)$: $sin(nx)=sin((n-1)x)cos(x)+cos((n-1)x)sin(x)$
      $(3)$: prepare to integrate by parts
      $(4)$: integrate by parts
      $(5)$: simplify



      Plug in $m=2011$ and $n=2013$ and see what happens.



      However, this gives the answer $frac1{2012}$, which is confirmed by Mathematica.






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Note that
        $$
        begin{align}
        I(m,n)
        &=int_0^{pi/2}cos^m(x)sin(nx),mathrm{d}xtag1\
        &=int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}x+int_0^{pi/2}cos^m(x)cos((n-1)x)sin(x),mathrm{d}xtag2\
        &=I(m+1,n-1)-frac1{m+1}int_0^{pi/2}cos((n-1)x),mathrm{d}cos^{m+1}(x)tag3\
        &=I(m+1,n-1)+frac1{m+1}-frac{n-1}{m+1}int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}xtag4\
        &=frac{m-n+2}{m+1},I(m+1,n-1)+frac1{m+1}tag5
        end{align}
        $$

        Explanation:
        $(1)$: define $I(m,n)$
        $(2)$: $sin(nx)=sin((n-1)x)cos(x)+cos((n-1)x)sin(x)$
        $(3)$: prepare to integrate by parts
        $(4)$: integrate by parts
        $(5)$: simplify



        Plug in $m=2011$ and $n=2013$ and see what happens.



        However, this gives the answer $frac1{2012}$, which is confirmed by Mathematica.






        share|cite|improve this answer











        $endgroup$



        Note that
        $$
        begin{align}
        I(m,n)
        &=int_0^{pi/2}cos^m(x)sin(nx),mathrm{d}xtag1\
        &=int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}x+int_0^{pi/2}cos^m(x)cos((n-1)x)sin(x),mathrm{d}xtag2\
        &=I(m+1,n-1)-frac1{m+1}int_0^{pi/2}cos((n-1)x),mathrm{d}cos^{m+1}(x)tag3\
        &=I(m+1,n-1)+frac1{m+1}-frac{n-1}{m+1}int_0^{pi/2}cos^{m+1}(x)sin((n-1)x),mathrm{d}xtag4\
        &=frac{m-n+2}{m+1},I(m+1,n-1)+frac1{m+1}tag5
        end{align}
        $$

        Explanation:
        $(1)$: define $I(m,n)$
        $(2)$: $sin(nx)=sin((n-1)x)cos(x)+cos((n-1)x)sin(x)$
        $(3)$: prepare to integrate by parts
        $(4)$: integrate by parts
        $(5)$: simplify



        Plug in $m=2011$ and $n=2013$ and see what happens.



        However, this gives the answer $frac1{2012}$, which is confirmed by Mathematica.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 15 '18 at 10:21

























        answered Dec 15 '18 at 10:13









        robjohnrobjohn

        268k27309634




        268k27309634






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040277%2ffinding-value-of-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten