Separate real and imaginary part of a transfer function
Multi tool use
$begingroup$
So I have this fourth order transfer function
$$ G(s) = frac{2}{(1+itauomega)^4} $$
I have figured out that multiplying with the complex conjugate let's you separate the real and imaginary part.
However, I don't seem to find the right answer according to my book.
I end up with
$$ Re = frac{2 - 12tau^2omega^2 + 2tau^4omega^4}{(1+tau^2omega^2)^4} $$
$$ Im = frac{-8tauomega + 8tau^3omega^3}{(1+tau^2omega^2)^4} $$
Calculating the phase angle leaves me with
$$ arctan(frac{-8tauomega + 8tau^3omega^3}{2 - 12tau^2omega^2+2tau^4omega^4}) $$
While the book says the solution is
$$ -4arctan(tauomega) $$
Comparing the solution of the modulus suggests that my approach is correct, since the denominator is the same.. Am I missing something? I don't see how I can ever reduce the fraction to the one from the solutions.
complex-numbers
$endgroup$
add a comment |
$begingroup$
So I have this fourth order transfer function
$$ G(s) = frac{2}{(1+itauomega)^4} $$
I have figured out that multiplying with the complex conjugate let's you separate the real and imaginary part.
However, I don't seem to find the right answer according to my book.
I end up with
$$ Re = frac{2 - 12tau^2omega^2 + 2tau^4omega^4}{(1+tau^2omega^2)^4} $$
$$ Im = frac{-8tauomega + 8tau^3omega^3}{(1+tau^2omega^2)^4} $$
Calculating the phase angle leaves me with
$$ arctan(frac{-8tauomega + 8tau^3omega^3}{2 - 12tau^2omega^2+2tau^4omega^4}) $$
While the book says the solution is
$$ -4arctan(tauomega) $$
Comparing the solution of the modulus suggests that my approach is correct, since the denominator is the same.. Am I missing something? I don't see how I can ever reduce the fraction to the one from the solutions.
complex-numbers
$endgroup$
add a comment |
$begingroup$
So I have this fourth order transfer function
$$ G(s) = frac{2}{(1+itauomega)^4} $$
I have figured out that multiplying with the complex conjugate let's you separate the real and imaginary part.
However, I don't seem to find the right answer according to my book.
I end up with
$$ Re = frac{2 - 12tau^2omega^2 + 2tau^4omega^4}{(1+tau^2omega^2)^4} $$
$$ Im = frac{-8tauomega + 8tau^3omega^3}{(1+tau^2omega^2)^4} $$
Calculating the phase angle leaves me with
$$ arctan(frac{-8tauomega + 8tau^3omega^3}{2 - 12tau^2omega^2+2tau^4omega^4}) $$
While the book says the solution is
$$ -4arctan(tauomega) $$
Comparing the solution of the modulus suggests that my approach is correct, since the denominator is the same.. Am I missing something? I don't see how I can ever reduce the fraction to the one from the solutions.
complex-numbers
$endgroup$
So I have this fourth order transfer function
$$ G(s) = frac{2}{(1+itauomega)^4} $$
I have figured out that multiplying with the complex conjugate let's you separate the real and imaginary part.
However, I don't seem to find the right answer according to my book.
I end up with
$$ Re = frac{2 - 12tau^2omega^2 + 2tau^4omega^4}{(1+tau^2omega^2)^4} $$
$$ Im = frac{-8tauomega + 8tau^3omega^3}{(1+tau^2omega^2)^4} $$
Calculating the phase angle leaves me with
$$ arctan(frac{-8tauomega + 8tau^3omega^3}{2 - 12tau^2omega^2+2tau^4omega^4}) $$
While the book says the solution is
$$ -4arctan(tauomega) $$
Comparing the solution of the modulus suggests that my approach is correct, since the denominator is the same.. Am I missing something? I don't see how I can ever reduce the fraction to the one from the solutions.
complex-numbers
complex-numbers
asked Jan 20 '17 at 22:08
boortmansboortmans
1012
1012
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
begin{eqnarray*}
tan^{-1}(A)+tan^{-1}(B) &=& tan^{-1}(frac{A+B}{1-AB})
end{eqnarray*}
Is that helpful ?
begin{eqnarray*}
-tan^{-1}(A) &=& tan^{-1}(-A).
end{eqnarray*}
Maybe they are the same !
$endgroup$
add a comment |
$begingroup$
$$arg(1+irw)=arctanfrac{rw}{1}=arctan rw$$
$$argfrac{sqrt[4]{2}}{1+irw}=-arctan rw$$
because numbers doesn't effect on arg,
$$argfrac{2}{(1+irw)^4}=argBig(frac{sqrt[4]{2}}{1+irw}Big)^4=4argfrac{sqrt[4]{2}}{1+irw}=-4arctan rw$$
$endgroup$
add a comment |
$begingroup$
$$argfrac {4}{(1+iromega)^4}=arg 4-4arg(1+iromega)=0-4arctan romega$$
$endgroup$
add a comment |
$begingroup$
Observe that
$$tan 4theta=frac{2tan2theta}{1-tan^22theta}=frac{2dfrac{2tantheta}{1-tan^2theta}}{1-left(dfrac{2tantheta}{1-tan^2theta}right)^2}=frac{4tantheta-4tan^3theta}{1-6tan^2theta+tan^4theta}$$
and compare the two solutions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2106666%2fseparate-real-and-imaginary-part-of-a-transfer-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{eqnarray*}
tan^{-1}(A)+tan^{-1}(B) &=& tan^{-1}(frac{A+B}{1-AB})
end{eqnarray*}
Is that helpful ?
begin{eqnarray*}
-tan^{-1}(A) &=& tan^{-1}(-A).
end{eqnarray*}
Maybe they are the same !
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
tan^{-1}(A)+tan^{-1}(B) &=& tan^{-1}(frac{A+B}{1-AB})
end{eqnarray*}
Is that helpful ?
begin{eqnarray*}
-tan^{-1}(A) &=& tan^{-1}(-A).
end{eqnarray*}
Maybe they are the same !
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
tan^{-1}(A)+tan^{-1}(B) &=& tan^{-1}(frac{A+B}{1-AB})
end{eqnarray*}
Is that helpful ?
begin{eqnarray*}
-tan^{-1}(A) &=& tan^{-1}(-A).
end{eqnarray*}
Maybe they are the same !
$endgroup$
begin{eqnarray*}
tan^{-1}(A)+tan^{-1}(B) &=& tan^{-1}(frac{A+B}{1-AB})
end{eqnarray*}
Is that helpful ?
begin{eqnarray*}
-tan^{-1}(A) &=& tan^{-1}(-A).
end{eqnarray*}
Maybe they are the same !
answered Jan 20 '17 at 22:16
Donald SplutterwitDonald Splutterwit
22.8k21446
22.8k21446
add a comment |
add a comment |
$begingroup$
$$arg(1+irw)=arctanfrac{rw}{1}=arctan rw$$
$$argfrac{sqrt[4]{2}}{1+irw}=-arctan rw$$
because numbers doesn't effect on arg,
$$argfrac{2}{(1+irw)^4}=argBig(frac{sqrt[4]{2}}{1+irw}Big)^4=4argfrac{sqrt[4]{2}}{1+irw}=-4arctan rw$$
$endgroup$
add a comment |
$begingroup$
$$arg(1+irw)=arctanfrac{rw}{1}=arctan rw$$
$$argfrac{sqrt[4]{2}}{1+irw}=-arctan rw$$
because numbers doesn't effect on arg,
$$argfrac{2}{(1+irw)^4}=argBig(frac{sqrt[4]{2}}{1+irw}Big)^4=4argfrac{sqrt[4]{2}}{1+irw}=-4arctan rw$$
$endgroup$
add a comment |
$begingroup$
$$arg(1+irw)=arctanfrac{rw}{1}=arctan rw$$
$$argfrac{sqrt[4]{2}}{1+irw}=-arctan rw$$
because numbers doesn't effect on arg,
$$argfrac{2}{(1+irw)^4}=argBig(frac{sqrt[4]{2}}{1+irw}Big)^4=4argfrac{sqrt[4]{2}}{1+irw}=-4arctan rw$$
$endgroup$
$$arg(1+irw)=arctanfrac{rw}{1}=arctan rw$$
$$argfrac{sqrt[4]{2}}{1+irw}=-arctan rw$$
because numbers doesn't effect on arg,
$$argfrac{2}{(1+irw)^4}=argBig(frac{sqrt[4]{2}}{1+irw}Big)^4=4argfrac{sqrt[4]{2}}{1+irw}=-4arctan rw$$
answered Jan 20 '17 at 22:19
NosratiNosrati
26.6k62354
26.6k62354
add a comment |
add a comment |
$begingroup$
$$argfrac {4}{(1+iromega)^4}=arg 4-4arg(1+iromega)=0-4arctan romega$$
$endgroup$
add a comment |
$begingroup$
$$argfrac {4}{(1+iromega)^4}=arg 4-4arg(1+iromega)=0-4arctan romega$$
$endgroup$
add a comment |
$begingroup$
$$argfrac {4}{(1+iromega)^4}=arg 4-4arg(1+iromega)=0-4arctan romega$$
$endgroup$
$$argfrac {4}{(1+iromega)^4}=arg 4-4arg(1+iromega)=0-4arctan romega$$
answered Jan 20 '17 at 22:23
David QuinnDavid Quinn
24.1k21141
24.1k21141
add a comment |
add a comment |
$begingroup$
Observe that
$$tan 4theta=frac{2tan2theta}{1-tan^22theta}=frac{2dfrac{2tantheta}{1-tan^2theta}}{1-left(dfrac{2tantheta}{1-tan^2theta}right)^2}=frac{4tantheta-4tan^3theta}{1-6tan^2theta+tan^4theta}$$
and compare the two solutions.
$endgroup$
add a comment |
$begingroup$
Observe that
$$tan 4theta=frac{2tan2theta}{1-tan^22theta}=frac{2dfrac{2tantheta}{1-tan^2theta}}{1-left(dfrac{2tantheta}{1-tan^2theta}right)^2}=frac{4tantheta-4tan^3theta}{1-6tan^2theta+tan^4theta}$$
and compare the two solutions.
$endgroup$
add a comment |
$begingroup$
Observe that
$$tan 4theta=frac{2tan2theta}{1-tan^22theta}=frac{2dfrac{2tantheta}{1-tan^2theta}}{1-left(dfrac{2tantheta}{1-tan^2theta}right)^2}=frac{4tantheta-4tan^3theta}{1-6tan^2theta+tan^4theta}$$
and compare the two solutions.
$endgroup$
Observe that
$$tan 4theta=frac{2tan2theta}{1-tan^22theta}=frac{2dfrac{2tantheta}{1-tan^2theta}}{1-left(dfrac{2tantheta}{1-tan^2theta}right)^2}=frac{4tantheta-4tan^3theta}{1-6tan^2theta+tan^4theta}$$
and compare the two solutions.
answered Oct 12 '18 at 21:09
Yves DaoustYves Daoust
129k676227
129k676227
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2106666%2fseparate-real-and-imaginary-part-of-a-transfer-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
GOct Ah0np5 ujmCLi,oVI0gQq2Me,V0WPvLku 9vHNPRPBXuddD,Oequ3x8