Limit of the average of the laplacian of a test function and a continuous function
$begingroup$
Let $f$ be a continuous function, and $B(x,r)$ the ball of center $x$ and radius $r>0$ in $ mathbb{R}^{m} $ with $mgeq1$. We know that there exists a test function $phi_{r}(t)$ that is between 0 and 1, its support is in $B(x,r)$ and is equal to 1 on the closure of $B(x,r/2)$. Let $theta$ be a smooth function whose Laplacian is identically 1 everywhere. What is
$$lim_{rto 0}frac{1}{lambda r^{m}}int_{B(x,r)}f(t)Delta(phi_{r}(t)theta(t))dt?$$ ( $lambda$ is the volume of the unit ball in $ mathbb{R}^{m} $ and $Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
add a comment |
$begingroup$
Let $f$ be a continuous function, and $B(x,r)$ the ball of center $x$ and radius $r>0$ in $ mathbb{R}^{m} $ with $mgeq1$. We know that there exists a test function $phi_{r}(t)$ that is between 0 and 1, its support is in $B(x,r)$ and is equal to 1 on the closure of $B(x,r/2)$. Let $theta$ be a smooth function whose Laplacian is identically 1 everywhere. What is
$$lim_{rto 0}frac{1}{lambda r^{m}}int_{B(x,r)}f(t)Delta(phi_{r}(t)theta(t))dt?$$ ( $lambda$ is the volume of the unit ball in $ mathbb{R}^{m} $ and $Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
add a comment |
$begingroup$
Let $f$ be a continuous function, and $B(x,r)$ the ball of center $x$ and radius $r>0$ in $ mathbb{R}^{m} $ with $mgeq1$. We know that there exists a test function $phi_{r}(t)$ that is between 0 and 1, its support is in $B(x,r)$ and is equal to 1 on the closure of $B(x,r/2)$. Let $theta$ be a smooth function whose Laplacian is identically 1 everywhere. What is
$$lim_{rto 0}frac{1}{lambda r^{m}}int_{B(x,r)}f(t)Delta(phi_{r}(t)theta(t))dt?$$ ( $lambda$ is the volume of the unit ball in $ mathbb{R}^{m} $ and $Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
Let $f$ be a continuous function, and $B(x,r)$ the ball of center $x$ and radius $r>0$ in $ mathbb{R}^{m} $ with $mgeq1$. We know that there exists a test function $phi_{r}(t)$ that is between 0 and 1, its support is in $B(x,r)$ and is equal to 1 on the closure of $B(x,r/2)$. Let $theta$ be a smooth function whose Laplacian is identically 1 everywhere. What is
$$lim_{rto 0}frac{1}{lambda r^{m}}int_{B(x,r)}f(t)Delta(phi_{r}(t)theta(t))dt?$$ ( $lambda$ is the volume of the unit ball in $ mathbb{R}^{m} $ and $Delta$ is the laplacian)
real-analysis distribution-theory
real-analysis distribution-theory
edited Dec 19 '18 at 6:28
M. Rahmat
asked Dec 19 '18 at 6:12
M. RahmatM. Rahmat
291212
291212
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046061%2flimit-of-the-average-of-the-laplacian-of-a-test-function-and-a-continuous-functi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046061%2flimit-of-the-average-of-the-laplacian-of-a-test-function-and-a-continuous-functi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown