Question about fixed field of subgroup of Galois group.
$begingroup$
$ F=K(alpha) $ is a finite Galois extension of field $ K $. Let $ G $ be the Galois group, and $ H $ is a subgroup of $ G $. Define $ f(x)=prod_{sigmain H}(x-sigma(alpha)) $, prove that the fixed field of $ H $ is generated by $ K $ and all the coefficients of $ f(x) $.
Can someone give me some hints about how the fixed field of $ H $ is related to the coefficients of $ f(x) $?
abstract-algebra galois-theory
$endgroup$
add a comment |
$begingroup$
$ F=K(alpha) $ is a finite Galois extension of field $ K $. Let $ G $ be the Galois group, and $ H $ is a subgroup of $ G $. Define $ f(x)=prod_{sigmain H}(x-sigma(alpha)) $, prove that the fixed field of $ H $ is generated by $ K $ and all the coefficients of $ f(x) $.
Can someone give me some hints about how the fixed field of $ H $ is related to the coefficients of $ f(x) $?
abstract-algebra galois-theory
$endgroup$
1
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57
add a comment |
$begingroup$
$ F=K(alpha) $ is a finite Galois extension of field $ K $. Let $ G $ be the Galois group, and $ H $ is a subgroup of $ G $. Define $ f(x)=prod_{sigmain H}(x-sigma(alpha)) $, prove that the fixed field of $ H $ is generated by $ K $ and all the coefficients of $ f(x) $.
Can someone give me some hints about how the fixed field of $ H $ is related to the coefficients of $ f(x) $?
abstract-algebra galois-theory
$endgroup$
$ F=K(alpha) $ is a finite Galois extension of field $ K $. Let $ G $ be the Galois group, and $ H $ is a subgroup of $ G $. Define $ f(x)=prod_{sigmain H}(x-sigma(alpha)) $, prove that the fixed field of $ H $ is generated by $ K $ and all the coefficients of $ f(x) $.
Can someone give me some hints about how the fixed field of $ H $ is related to the coefficients of $ f(x) $?
abstract-algebra galois-theory
abstract-algebra galois-theory
asked Dec 19 '18 at 6:53
user549397user549397
1,5081418
1,5081418
1
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57
add a comment |
1
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57
1
1
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046110%2fquestion-about-fixed-field-of-subgroup-of-galois-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046110%2fquestion-about-fixed-field-of-subgroup-of-galois-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Can you show the coefficients of $f$ lie in the fixed field of $H$?
$endgroup$
– Lord Shark the Unknown
Dec 19 '18 at 7:09
$begingroup$
$f(x) = prod_{sigma in H} (x-sigma(alpha)) = sum_{n=0}^N a_n x^n$ then for any ring morphism $rho$, $sum_{n=0}^N rho(a_n) x^n = prod_{sigma in H} (x-rho(sigma(alpha)))$. What if $rho in H$ ? Then let $beta in F^H, beta = sum_j c_j alpha^j = sum_j c_j frac{1}{|H|}sum_{sigmain H}sigma(alpha)^j $
$endgroup$
– reuns
Dec 19 '18 at 10:57