Rank of a smooth map is lower semicontinuous?
$begingroup$
Let $F:Mrightarrow N$ be a smooth map between manifolds, $pin M$. Prove that if $operatorname{rank}_{p}F=r$, then there exists a neighborhood $U$ of $p$, such that for $forall qin U$, $operatorname{rank}_{q}Fgeqslant r$.
Could anyone help me? Thanks in advance.
differential-geometry manifolds smooth-manifolds
$endgroup$
add a comment |
$begingroup$
Let $F:Mrightarrow N$ be a smooth map between manifolds, $pin M$. Prove that if $operatorname{rank}_{p}F=r$, then there exists a neighborhood $U$ of $p$, such that for $forall qin U$, $operatorname{rank}_{q}Fgeqslant r$.
Could anyone help me? Thanks in advance.
differential-geometry manifolds smooth-manifolds
$endgroup$
3
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32
add a comment |
$begingroup$
Let $F:Mrightarrow N$ be a smooth map between manifolds, $pin M$. Prove that if $operatorname{rank}_{p}F=r$, then there exists a neighborhood $U$ of $p$, such that for $forall qin U$, $operatorname{rank}_{q}Fgeqslant r$.
Could anyone help me? Thanks in advance.
differential-geometry manifolds smooth-manifolds
$endgroup$
Let $F:Mrightarrow N$ be a smooth map between manifolds, $pin M$. Prove that if $operatorname{rank}_{p}F=r$, then there exists a neighborhood $U$ of $p$, such that for $forall qin U$, $operatorname{rank}_{q}Fgeqslant r$.
Could anyone help me? Thanks in advance.
differential-geometry manifolds smooth-manifolds
differential-geometry manifolds smooth-manifolds
asked Dec 19 '18 at 6:51
user450201user450201
1018
1018
3
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32
add a comment |
3
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32
3
3
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us choose coordinate charts $(x_{1},ldots,x_{n})$ around $p$ and $(y_{1},ldots,y_{m})$ around $F(p)$. Writing $F=big(F_{1}(x_{1},ldots,x_{n}),ldots,F_{m}(x_{1},ldots,x_{n})big)$, we can express the derivative $d_{p}F$ as a matrix
$$
begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(p) & cdots & frac{partial F_{1}}{partial x_{n}}(p)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(p) & cdots & frac{partial F_{m}}{partial x_{n}}(p)
end{pmatrix}.
$$
By assumption, this matrix has rank $r$, so there is a nonzero minor of size $rtimes r$:
$$
begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(p)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(p)
end{vmatrix}neq 0.
$$
The map
$$
G:qmapsto begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(q)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(q)
end{vmatrix},
$$
is continuous and nonzero at $p$, so there exists a neighborhood $U$ of $p$ such that $G(q)neq 0$ for all $qin U$. This implies that for all $qin U$
$$
d_{q}F=begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(q) & cdots & frac{partial F_{1}}{partial x_{n}}(q)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(q) & cdots & frac{partial F_{m}}{partial x_{n}}(q)
end{pmatrix}
$$
has rank at least $r$, since it has a nonzero $rtimes r$ minor.
$endgroup$
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046105%2frank-of-a-smooth-map-is-lower-semicontinuous%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us choose coordinate charts $(x_{1},ldots,x_{n})$ around $p$ and $(y_{1},ldots,y_{m})$ around $F(p)$. Writing $F=big(F_{1}(x_{1},ldots,x_{n}),ldots,F_{m}(x_{1},ldots,x_{n})big)$, we can express the derivative $d_{p}F$ as a matrix
$$
begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(p) & cdots & frac{partial F_{1}}{partial x_{n}}(p)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(p) & cdots & frac{partial F_{m}}{partial x_{n}}(p)
end{pmatrix}.
$$
By assumption, this matrix has rank $r$, so there is a nonzero minor of size $rtimes r$:
$$
begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(p)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(p)
end{vmatrix}neq 0.
$$
The map
$$
G:qmapsto begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(q)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(q)
end{vmatrix},
$$
is continuous and nonzero at $p$, so there exists a neighborhood $U$ of $p$ such that $G(q)neq 0$ for all $qin U$. This implies that for all $qin U$
$$
d_{q}F=begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(q) & cdots & frac{partial F_{1}}{partial x_{n}}(q)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(q) & cdots & frac{partial F_{m}}{partial x_{n}}(q)
end{pmatrix}
$$
has rank at least $r$, since it has a nonzero $rtimes r$ minor.
$endgroup$
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
add a comment |
$begingroup$
Let us choose coordinate charts $(x_{1},ldots,x_{n})$ around $p$ and $(y_{1},ldots,y_{m})$ around $F(p)$. Writing $F=big(F_{1}(x_{1},ldots,x_{n}),ldots,F_{m}(x_{1},ldots,x_{n})big)$, we can express the derivative $d_{p}F$ as a matrix
$$
begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(p) & cdots & frac{partial F_{1}}{partial x_{n}}(p)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(p) & cdots & frac{partial F_{m}}{partial x_{n}}(p)
end{pmatrix}.
$$
By assumption, this matrix has rank $r$, so there is a nonzero minor of size $rtimes r$:
$$
begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(p)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(p)
end{vmatrix}neq 0.
$$
The map
$$
G:qmapsto begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(q)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(q)
end{vmatrix},
$$
is continuous and nonzero at $p$, so there exists a neighborhood $U$ of $p$ such that $G(q)neq 0$ for all $qin U$. This implies that for all $qin U$
$$
d_{q}F=begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(q) & cdots & frac{partial F_{1}}{partial x_{n}}(q)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(q) & cdots & frac{partial F_{m}}{partial x_{n}}(q)
end{pmatrix}
$$
has rank at least $r$, since it has a nonzero $rtimes r$ minor.
$endgroup$
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
add a comment |
$begingroup$
Let us choose coordinate charts $(x_{1},ldots,x_{n})$ around $p$ and $(y_{1},ldots,y_{m})$ around $F(p)$. Writing $F=big(F_{1}(x_{1},ldots,x_{n}),ldots,F_{m}(x_{1},ldots,x_{n})big)$, we can express the derivative $d_{p}F$ as a matrix
$$
begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(p) & cdots & frac{partial F_{1}}{partial x_{n}}(p)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(p) & cdots & frac{partial F_{m}}{partial x_{n}}(p)
end{pmatrix}.
$$
By assumption, this matrix has rank $r$, so there is a nonzero minor of size $rtimes r$:
$$
begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(p)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(p)
end{vmatrix}neq 0.
$$
The map
$$
G:qmapsto begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(q)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(q)
end{vmatrix},
$$
is continuous and nonzero at $p$, so there exists a neighborhood $U$ of $p$ such that $G(q)neq 0$ for all $qin U$. This implies that for all $qin U$
$$
d_{q}F=begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(q) & cdots & frac{partial F_{1}}{partial x_{n}}(q)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(q) & cdots & frac{partial F_{m}}{partial x_{n}}(q)
end{pmatrix}
$$
has rank at least $r$, since it has a nonzero $rtimes r$ minor.
$endgroup$
Let us choose coordinate charts $(x_{1},ldots,x_{n})$ around $p$ and $(y_{1},ldots,y_{m})$ around $F(p)$. Writing $F=big(F_{1}(x_{1},ldots,x_{n}),ldots,F_{m}(x_{1},ldots,x_{n})big)$, we can express the derivative $d_{p}F$ as a matrix
$$
begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(p) & cdots & frac{partial F_{1}}{partial x_{n}}(p)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(p) & cdots & frac{partial F_{m}}{partial x_{n}}(p)
end{pmatrix}.
$$
By assumption, this matrix has rank $r$, so there is a nonzero minor of size $rtimes r$:
$$
begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(p)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(p) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(p)
end{vmatrix}neq 0.
$$
The map
$$
G:qmapsto begin{vmatrix}
frac{partial F_{i_{1}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{1}}}{partial x_{j_{r}}}(q)\
vdots & & vdots\
frac{partial F_{i_{r}}}{partial x_{j_{1}}}(q) & cdots & frac{partial F_{i_{r}}}{partial x_{j_{r}}}(q)
end{vmatrix},
$$
is continuous and nonzero at $p$, so there exists a neighborhood $U$ of $p$ such that $G(q)neq 0$ for all $qin U$. This implies that for all $qin U$
$$
d_{q}F=begin{pmatrix}
frac{partial F_{1}}{partial x_{1}}(q) & cdots & frac{partial F_{1}}{partial x_{n}}(q)\
vdots & & vdots\
frac{partial F_{m}}{partial x_{1}}(q) & cdots & frac{partial F_{m}}{partial x_{n}}(q)
end{pmatrix}
$$
has rank at least $r$, since it has a nonzero $rtimes r$ minor.
answered Dec 20 '18 at 11:06
studiosusstudiosus
2,174715
2,174715
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
add a comment |
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
$begingroup$
Very clear. Really appreciate:)
$endgroup$
– user450201
Dec 20 '18 at 11:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046105%2frank-of-a-smooth-map-is-lower-semicontinuous%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
This is actually a linear-algebra fact. The map $mathrm{rank}:M_{mtimes n}(mathbb{R})tomathbb{Z}$ is lower semicontinuous.
$endgroup$
– Amitai Yuval
Dec 19 '18 at 7:32