Construction of graph with degrees $d$ and $(d + 1)$











up vote
0
down vote

favorite












Let $n = a + b$ and $d$ be non-negative integers such that: $ad + b(d + 1)$ is even and $(d + 1) leq (n - 1)$. Does there exist a graph with $n$ vertices such that $a$ of them have degree $d$ and $b$ of them have degree $(d + 1)$? Is there an explicit construction?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Let $n = a + b$ and $d$ be non-negative integers such that: $ad + b(d + 1)$ is even and $(d + 1) leq (n - 1)$. Does there exist a graph with $n$ vertices such that $a$ of them have degree $d$ and $b$ of them have degree $(d + 1)$? Is there an explicit construction?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $n = a + b$ and $d$ be non-negative integers such that: $ad + b(d + 1)$ is even and $(d + 1) leq (n - 1)$. Does there exist a graph with $n$ vertices such that $a$ of them have degree $d$ and $b$ of them have degree $(d + 1)$? Is there an explicit construction?










      share|cite|improve this question













      Let $n = a + b$ and $d$ be non-negative integers such that: $ad + b(d + 1)$ is even and $(d + 1) leq (n - 1)$. Does there exist a graph with $n$ vertices such that $a$ of them have degree $d$ and $b$ of them have degree $(d + 1)$? Is there an explicit construction?







      graph-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 17 at 16:09









      user404944

      738212




      738212






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          This is not the answer but maybe that can give some idea:



          Fix an integer $kgeq3$. There exist a $(2k-1)$-vertex $(k-2)$-edge-connected simple graph $H_k=(V_k,E_k)$ with $V_k={y_1,y_2,...,y_{k+1},z_{1},z_{2},...,z_{k-2}}$, where all vertices $y_i$ have degree $k$ and all vertices $z_j$ have degree $(k-1)$.



          proof:
          Start with a k-vertex complete graph on the vertices ${y_1,...,y_k}$, plus a $(k-2)$-vertex complete graph on the vertices ${z_1,...,z_{k-2}}$. Next place an edge from the vertex $y_{k+1}$ to the vertices $y_{k-1}$ and $y_{k}$, then $(k-2)$ edges of the form $y_jz_j$ and $(k-2)$ edges of the form $y_{k+1}z_j$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002518%2fconstruction-of-graph-with-degrees-d-and-d-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            This is not the answer but maybe that can give some idea:



            Fix an integer $kgeq3$. There exist a $(2k-1)$-vertex $(k-2)$-edge-connected simple graph $H_k=(V_k,E_k)$ with $V_k={y_1,y_2,...,y_{k+1},z_{1},z_{2},...,z_{k-2}}$, where all vertices $y_i$ have degree $k$ and all vertices $z_j$ have degree $(k-1)$.



            proof:
            Start with a k-vertex complete graph on the vertices ${y_1,...,y_k}$, plus a $(k-2)$-vertex complete graph on the vertices ${z_1,...,z_{k-2}}$. Next place an edge from the vertex $y_{k+1}$ to the vertices $y_{k-1}$ and $y_{k}$, then $(k-2)$ edges of the form $y_jz_j$ and $(k-2)$ edges of the form $y_{k+1}z_j$.






            share|cite|improve this answer

























              up vote
              1
              down vote













              This is not the answer but maybe that can give some idea:



              Fix an integer $kgeq3$. There exist a $(2k-1)$-vertex $(k-2)$-edge-connected simple graph $H_k=(V_k,E_k)$ with $V_k={y_1,y_2,...,y_{k+1},z_{1},z_{2},...,z_{k-2}}$, where all vertices $y_i$ have degree $k$ and all vertices $z_j$ have degree $(k-1)$.



              proof:
              Start with a k-vertex complete graph on the vertices ${y_1,...,y_k}$, plus a $(k-2)$-vertex complete graph on the vertices ${z_1,...,z_{k-2}}$. Next place an edge from the vertex $y_{k+1}$ to the vertices $y_{k-1}$ and $y_{k}$, then $(k-2)$ edges of the form $y_jz_j$ and $(k-2)$ edges of the form $y_{k+1}z_j$.






              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                This is not the answer but maybe that can give some idea:



                Fix an integer $kgeq3$. There exist a $(2k-1)$-vertex $(k-2)$-edge-connected simple graph $H_k=(V_k,E_k)$ with $V_k={y_1,y_2,...,y_{k+1},z_{1},z_{2},...,z_{k-2}}$, where all vertices $y_i$ have degree $k$ and all vertices $z_j$ have degree $(k-1)$.



                proof:
                Start with a k-vertex complete graph on the vertices ${y_1,...,y_k}$, plus a $(k-2)$-vertex complete graph on the vertices ${z_1,...,z_{k-2}}$. Next place an edge from the vertex $y_{k+1}$ to the vertices $y_{k-1}$ and $y_{k}$, then $(k-2)$ edges of the form $y_jz_j$ and $(k-2)$ edges of the form $y_{k+1}z_j$.






                share|cite|improve this answer












                This is not the answer but maybe that can give some idea:



                Fix an integer $kgeq3$. There exist a $(2k-1)$-vertex $(k-2)$-edge-connected simple graph $H_k=(V_k,E_k)$ with $V_k={y_1,y_2,...,y_{k+1},z_{1},z_{2},...,z_{k-2}}$, where all vertices $y_i$ have degree $k$ and all vertices $z_j$ have degree $(k-1)$.



                proof:
                Start with a k-vertex complete graph on the vertices ${y_1,...,y_k}$, plus a $(k-2)$-vertex complete graph on the vertices ${z_1,...,z_{k-2}}$. Next place an edge from the vertex $y_{k+1}$ to the vertices $y_{k-1}$ and $y_{k}$, then $(k-2)$ edges of the form $y_jz_j$ and $(k-2)$ edges of the form $y_{k+1}z_j$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 19 at 0:51









                mathnoob

                73411




                73411






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002518%2fconstruction-of-graph-with-degrees-d-and-d-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten