What can we say about the Begaman transform of $fast g (t_2)- fast g(t_1)$?











up vote
0
down vote

favorite












Let $f, gin mathcal{S}(mathbb R)$. Then the convolution of two Schwartz class function is again Schwartz class function, that is, $fast g in mathcal{S}(mathbb R).$



Now we define
$$ H(t)= H(t_1,t_2)= int_{t_1}^{t_2} frac{d}{dr}(fast g)(r) dr = fast g (t_2)- fast g(t_1), (t_1, t_2 in mathbb R)$$



Since $(fast g)'= f'ast g,$ we may notice that, by Holder inequality, $|H|_{L^{infty}(mathbb R^{2})} leq |f'|_{L^{p}} |g|_{L^{p'}} < infty$ ($p'$ is the Holder conjugate).



We consider the Bergaman transform of $H$ as follows:



$$ BH(z)= int_{mathbb R^{2}} H(t) e^{2pi tcdot z- pi t^2- frac{pi}{2} z^2} dt, $$ where $ z= (z_1, z_2)in mathbb C times mathbb C = mathbb C^2$




Question: What can we say about the Bergaman transform of $H$?
Can we expect $| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} <infty$? Can we say that $left|| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} right|_{L^1_{z_2}} <infty$?











share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Let $f, gin mathcal{S}(mathbb R)$. Then the convolution of two Schwartz class function is again Schwartz class function, that is, $fast g in mathcal{S}(mathbb R).$



    Now we define
    $$ H(t)= H(t_1,t_2)= int_{t_1}^{t_2} frac{d}{dr}(fast g)(r) dr = fast g (t_2)- fast g(t_1), (t_1, t_2 in mathbb R)$$



    Since $(fast g)'= f'ast g,$ we may notice that, by Holder inequality, $|H|_{L^{infty}(mathbb R^{2})} leq |f'|_{L^{p}} |g|_{L^{p'}} < infty$ ($p'$ is the Holder conjugate).



    We consider the Bergaman transform of $H$ as follows:



    $$ BH(z)= int_{mathbb R^{2}} H(t) e^{2pi tcdot z- pi t^2- frac{pi}{2} z^2} dt, $$ where $ z= (z_1, z_2)in mathbb C times mathbb C = mathbb C^2$




    Question: What can we say about the Bergaman transform of $H$?
    Can we expect $| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} <infty$? Can we say that $left|| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} right|_{L^1_{z_2}} <infty$?











    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $f, gin mathcal{S}(mathbb R)$. Then the convolution of two Schwartz class function is again Schwartz class function, that is, $fast g in mathcal{S}(mathbb R).$



      Now we define
      $$ H(t)= H(t_1,t_2)= int_{t_1}^{t_2} frac{d}{dr}(fast g)(r) dr = fast g (t_2)- fast g(t_1), (t_1, t_2 in mathbb R)$$



      Since $(fast g)'= f'ast g,$ we may notice that, by Holder inequality, $|H|_{L^{infty}(mathbb R^{2})} leq |f'|_{L^{p}} |g|_{L^{p'}} < infty$ ($p'$ is the Holder conjugate).



      We consider the Bergaman transform of $H$ as follows:



      $$ BH(z)= int_{mathbb R^{2}} H(t) e^{2pi tcdot z- pi t^2- frac{pi}{2} z^2} dt, $$ where $ z= (z_1, z_2)in mathbb C times mathbb C = mathbb C^2$




      Question: What can we say about the Bergaman transform of $H$?
      Can we expect $| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} <infty$? Can we say that $left|| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} right|_{L^1_{z_2}} <infty$?











      share|cite|improve this question















      Let $f, gin mathcal{S}(mathbb R)$. Then the convolution of two Schwartz class function is again Schwartz class function, that is, $fast g in mathcal{S}(mathbb R).$



      Now we define
      $$ H(t)= H(t_1,t_2)= int_{t_1}^{t_2} frac{d}{dr}(fast g)(r) dr = fast g (t_2)- fast g(t_1), (t_1, t_2 in mathbb R)$$



      Since $(fast g)'= f'ast g,$ we may notice that, by Holder inequality, $|H|_{L^{infty}(mathbb R^{2})} leq |f'|_{L^{p}} |g|_{L^{p'}} < infty$ ($p'$ is the Holder conjugate).



      We consider the Bergaman transform of $H$ as follows:



      $$ BH(z)= int_{mathbb R^{2}} H(t) e^{2pi tcdot z- pi t^2- frac{pi}{2} z^2} dt, $$ where $ z= (z_1, z_2)in mathbb C times mathbb C = mathbb C^2$




      Question: What can we say about the Bergaman transform of $H$?
      Can we expect $| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} <infty$? Can we say that $left|| e^{-pi |z|^2} B(z_1, z_2)|_{L^{infty}_{z_1}} right|_{L^1_{z_2}} <infty$?








      integration complex-analysis functional-analysis inequality intuition






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 17 at 20:43

























      asked Nov 17 at 19:58









      Math Learner

      3109




      3109



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002747%2fwhat-can-we-say-about-the-begaman-transform-of-f-ast-g-t-2-f-ast-gt-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002747%2fwhat-can-we-say-about-the-begaman-transform-of-f-ast-g-t-2-f-ast-gt-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Ida-Boy-Ed-Garten

          Verónica Boquete