Ehrenfeucht Games and Equivalence classes
$begingroup$
One of the fundamental results in Ehrenfeucht games is the equivalence
$mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$
with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?
set-theory game-theory
$endgroup$
add a comment |
$begingroup$
One of the fundamental results in Ehrenfeucht games is the equivalence
$mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$
with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?
set-theory game-theory
$endgroup$
add a comment |
$begingroup$
One of the fundamental results in Ehrenfeucht games is the equivalence
$mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$
with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?
set-theory game-theory
$endgroup$
One of the fundamental results in Ehrenfeucht games is the equivalence
$mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$
with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?
set-theory game-theory
set-theory game-theory
edited Dec 3 '18 at 20:33
Athanasios Margaris
asked Dec 2 '18 at 18:49
Athanasios MargarisAthanasios Margaris
1213
1213
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023039%2fehrenfeucht-games-and-equivalence-classes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023039%2fehrenfeucht-games-and-equivalence-classes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown