Ehrenfeucht Games and Equivalence classes












4












$begingroup$


One of the fundamental results in Ehrenfeucht games is the equivalence



$mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$



with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    One of the fundamental results in Ehrenfeucht games is the equivalence



    $mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$



    with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      One of the fundamental results in Ehrenfeucht games is the equivalence



      $mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$



      with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?










      share|cite|improve this question











      $endgroup$




      One of the fundamental results in Ehrenfeucht games is the equivalence



      $mathcal{I}sim_{m}^{sigma}mathcal{J}Leftrightarrowmathcal{I}equiv_{m}mathcal{J}$



      with the $sigma$-structures $mathcal{I}$ and $mathcal{J}$ participating (1) to the equivalence relation $sim_m^{sigma}$ if and only if Duplicator wins the Ehrenfeucht game of $m$ rounds and (2) to the equivalence relation $equiv_m$ if and only if they satisfy the same formulas with quantifier rank up to $m$. It is proven that the relation $sim_m^{sigma}$ partitions the set of $sigma$-structures to a finite number of equivalence classes $E_1,E_2,dots,E_r$ and we can pick for each one of those classes $E_i$, a formula $psi_i$ such that $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$. My question is this: these equivalence classes are the same (and equal in number) with the ones produced by the other equivalence relation $equiv_n$ (that also partitions the set of $sigma$-strucures in equivalence classes)? In this case, the characteristic formula $psi_i$ also characterizes and the equivalence classes associated with $equiv_m$? I mean, if we write the conditions (a) $mathcal{I}in E_iLeftrightarrowmathcal{I}modelspsi_i$ and (b) $mathcal{I},mathcal{J}in E_iLeftrightarrow(mathcal{I}modelspsi_iLeftrightarrowmathcal{J}modelspsi_i)$, then (a) and (b) uses the same $psi_i$?







      set-theory game-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 20:33







      Athanasios Margaris

















      asked Dec 2 '18 at 18:49









      Athanasios MargarisAthanasios Margaris

      1213




      1213






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023039%2fehrenfeucht-games-and-equivalence-classes%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023039%2fehrenfeucht-games-and-equivalence-classes%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten