Finding eigenvalues of $A^{10} + A^7 + 5A$.












0












$begingroup$


Problem: Let $A = begin{pmatrix} 1 & 2 & -1 \ 0 & 5 & -2 \ 0 & 6 & -2 end{pmatrix}$.



1) Compute the eigenvalues of $A^{10} + A^7 + 5A$.



2) Compute $A^{10} X$ for the vector $X = begin{pmatrix} 2 \ 4 \ 7 end{pmatrix}$.



Attempt at solution: I first computed the eigenvalues of $A$. The characteristic polynomial gives begin{align*} det(A - x mathbb{I}_3) = det begin{pmatrix} 1-x & 2 & -1 \ 0 & 5-x & -2 \ 0 & 6 & -2 -x end{pmatrix} end{align*} Laplace expansion along the first column gives begin{align*} det(A - x mathbb{I}_3) = (1-x) det begin{pmatrix} 5-x & -2 \ 6 & -2-x end{pmatrix} &= (1-x) [(5-x)(-2-x)+12] \ &= (1-x)(x^2-3x+2) \ &= (x-1)^2(2-x)end{align*} So the eigenvalues are $lambda_1 = 1, lambda_2 = 1$ and $lambda_3 = -2$.



Now, I'm aware that there is a theorem which says that if the matrix $A$ has an eigenvalue $lambda$, then $A^k$ has the eigenvalue $lambda^k$ corresponding to the same eigenvector. But I'm not sure what I should do about this sum here. Can I just add the corresponding eigenvalues? So for the first eigenvalue that would give me: $ 1^{10} + 1^7 + 5(1) = 7$?



Any help would be appreciated.



Edit: Figured out part 1), but I'm still wondering what to do with 2). Should I find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix and then I can compute the powers easily?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
    $endgroup$
    – Zhanxiong
    Jul 13 '15 at 21:16








  • 2




    $begingroup$
    If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:19










  • $begingroup$
    You should re-check your algebra, the eigenvalues are $2,1,1$
    $endgroup$
    – John McGee
    Jul 13 '15 at 21:20










  • $begingroup$
    Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
    $endgroup$
    – Kamil
    Jul 13 '15 at 21:23










  • $begingroup$
    It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:25
















0












$begingroup$


Problem: Let $A = begin{pmatrix} 1 & 2 & -1 \ 0 & 5 & -2 \ 0 & 6 & -2 end{pmatrix}$.



1) Compute the eigenvalues of $A^{10} + A^7 + 5A$.



2) Compute $A^{10} X$ for the vector $X = begin{pmatrix} 2 \ 4 \ 7 end{pmatrix}$.



Attempt at solution: I first computed the eigenvalues of $A$. The characteristic polynomial gives begin{align*} det(A - x mathbb{I}_3) = det begin{pmatrix} 1-x & 2 & -1 \ 0 & 5-x & -2 \ 0 & 6 & -2 -x end{pmatrix} end{align*} Laplace expansion along the first column gives begin{align*} det(A - x mathbb{I}_3) = (1-x) det begin{pmatrix} 5-x & -2 \ 6 & -2-x end{pmatrix} &= (1-x) [(5-x)(-2-x)+12] \ &= (1-x)(x^2-3x+2) \ &= (x-1)^2(2-x)end{align*} So the eigenvalues are $lambda_1 = 1, lambda_2 = 1$ and $lambda_3 = -2$.



Now, I'm aware that there is a theorem which says that if the matrix $A$ has an eigenvalue $lambda$, then $A^k$ has the eigenvalue $lambda^k$ corresponding to the same eigenvector. But I'm not sure what I should do about this sum here. Can I just add the corresponding eigenvalues? So for the first eigenvalue that would give me: $ 1^{10} + 1^7 + 5(1) = 7$?



Any help would be appreciated.



Edit: Figured out part 1), but I'm still wondering what to do with 2). Should I find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix and then I can compute the powers easily?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
    $endgroup$
    – Zhanxiong
    Jul 13 '15 at 21:16








  • 2




    $begingroup$
    If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:19










  • $begingroup$
    You should re-check your algebra, the eigenvalues are $2,1,1$
    $endgroup$
    – John McGee
    Jul 13 '15 at 21:20










  • $begingroup$
    Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
    $endgroup$
    – Kamil
    Jul 13 '15 at 21:23










  • $begingroup$
    It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:25














0












0








0


1



$begingroup$


Problem: Let $A = begin{pmatrix} 1 & 2 & -1 \ 0 & 5 & -2 \ 0 & 6 & -2 end{pmatrix}$.



1) Compute the eigenvalues of $A^{10} + A^7 + 5A$.



2) Compute $A^{10} X$ for the vector $X = begin{pmatrix} 2 \ 4 \ 7 end{pmatrix}$.



Attempt at solution: I first computed the eigenvalues of $A$. The characteristic polynomial gives begin{align*} det(A - x mathbb{I}_3) = det begin{pmatrix} 1-x & 2 & -1 \ 0 & 5-x & -2 \ 0 & 6 & -2 -x end{pmatrix} end{align*} Laplace expansion along the first column gives begin{align*} det(A - x mathbb{I}_3) = (1-x) det begin{pmatrix} 5-x & -2 \ 6 & -2-x end{pmatrix} &= (1-x) [(5-x)(-2-x)+12] \ &= (1-x)(x^2-3x+2) \ &= (x-1)^2(2-x)end{align*} So the eigenvalues are $lambda_1 = 1, lambda_2 = 1$ and $lambda_3 = -2$.



Now, I'm aware that there is a theorem which says that if the matrix $A$ has an eigenvalue $lambda$, then $A^k$ has the eigenvalue $lambda^k$ corresponding to the same eigenvector. But I'm not sure what I should do about this sum here. Can I just add the corresponding eigenvalues? So for the first eigenvalue that would give me: $ 1^{10} + 1^7 + 5(1) = 7$?



Any help would be appreciated.



Edit: Figured out part 1), but I'm still wondering what to do with 2). Should I find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix and then I can compute the powers easily?










share|cite|improve this question











$endgroup$




Problem: Let $A = begin{pmatrix} 1 & 2 & -1 \ 0 & 5 & -2 \ 0 & 6 & -2 end{pmatrix}$.



1) Compute the eigenvalues of $A^{10} + A^7 + 5A$.



2) Compute $A^{10} X$ for the vector $X = begin{pmatrix} 2 \ 4 \ 7 end{pmatrix}$.



Attempt at solution: I first computed the eigenvalues of $A$. The characteristic polynomial gives begin{align*} det(A - x mathbb{I}_3) = det begin{pmatrix} 1-x & 2 & -1 \ 0 & 5-x & -2 \ 0 & 6 & -2 -x end{pmatrix} end{align*} Laplace expansion along the first column gives begin{align*} det(A - x mathbb{I}_3) = (1-x) det begin{pmatrix} 5-x & -2 \ 6 & -2-x end{pmatrix} &= (1-x) [(5-x)(-2-x)+12] \ &= (1-x)(x^2-3x+2) \ &= (x-1)^2(2-x)end{align*} So the eigenvalues are $lambda_1 = 1, lambda_2 = 1$ and $lambda_3 = -2$.



Now, I'm aware that there is a theorem which says that if the matrix $A$ has an eigenvalue $lambda$, then $A^k$ has the eigenvalue $lambda^k$ corresponding to the same eigenvector. But I'm not sure what I should do about this sum here. Can I just add the corresponding eigenvalues? So for the first eigenvalue that would give me: $ 1^{10} + 1^7 + 5(1) = 7$?



Any help would be appreciated.



Edit: Figured out part 1), but I'm still wondering what to do with 2). Should I find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix and then I can compute the powers easily?







linear-algebra vector-spaces eigenvalues-eigenvectors






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 15 '15 at 17:49









Rising Star

292112




292112










asked Jul 13 '15 at 21:14









KamilKamil

1,99821545




1,99821545








  • 1




    $begingroup$
    The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
    $endgroup$
    – Zhanxiong
    Jul 13 '15 at 21:16








  • 2




    $begingroup$
    If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:19










  • $begingroup$
    You should re-check your algebra, the eigenvalues are $2,1,1$
    $endgroup$
    – John McGee
    Jul 13 '15 at 21:20










  • $begingroup$
    Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
    $endgroup$
    – Kamil
    Jul 13 '15 at 21:23










  • $begingroup$
    It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:25














  • 1




    $begingroup$
    The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
    $endgroup$
    – Zhanxiong
    Jul 13 '15 at 21:16








  • 2




    $begingroup$
    If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:19










  • $begingroup$
    You should re-check your algebra, the eigenvalues are $2,1,1$
    $endgroup$
    – John McGee
    Jul 13 '15 at 21:20










  • $begingroup$
    Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
    $endgroup$
    – Kamil
    Jul 13 '15 at 21:23










  • $begingroup$
    It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
    $endgroup$
    – Krijn
    Jul 13 '15 at 21:25








1




1




$begingroup$
The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
$endgroup$
– Zhanxiong
Jul 13 '15 at 21:16






$begingroup$
The theorem can be further generalized to polynomial case (your guess is right and not hard to verify).
$endgroup$
– Zhanxiong
Jul 13 '15 at 21:16






2




2




$begingroup$
If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
$endgroup$
– Krijn
Jul 13 '15 at 21:19




$begingroup$
If $Ax = lambda x$ then $(A^{10} + A^7 + 5A)(x) = A^{10}x + A^7x + 5Ax = lambda^{10}x + lambda^7 x + 5 cdot lambda x = (lambda^{10} + lambda^7 + 5 cdot lambda) cdot x$.
$endgroup$
– Krijn
Jul 13 '15 at 21:19












$begingroup$
You should re-check your algebra, the eigenvalues are $2,1,1$
$endgroup$
– John McGee
Jul 13 '15 at 21:20




$begingroup$
You should re-check your algebra, the eigenvalues are $2,1,1$
$endgroup$
– John McGee
Jul 13 '15 at 21:20












$begingroup$
Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
$endgroup$
– Kamil
Jul 13 '15 at 21:23




$begingroup$
Ah right, thanks. I wrote down the wrong minor. Also, for the second question, should I first find an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix, and then compute $A^{10}$?
$endgroup$
– Kamil
Jul 13 '15 at 21:23












$begingroup$
It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
$endgroup$
– Krijn
Jul 13 '15 at 21:25




$begingroup$
It might be easier to find the eigenvectors and write $X$ as a linear combination of these eigenvectors. Then $A^{10}X$ should be easy to calculate.
$endgroup$
– Krijn
Jul 13 '15 at 21:25










3 Answers
3






active

oldest

votes


















2












$begingroup$

For the first question, observe that
$$(A^{10}+A^{7}+5A)x=(lambda^{10}+lambda^7+5lambda)x$$ as I have shown in the comments.



For the second question, you observed correctly that we have three eigenvectors, for the eigenvalues $2$, $1$ and $1$, respectively
$$v_1 = begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix}, v_2 = begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix}, v_3= begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$$



We see that $X = begin{pmatrix} 2\ 4 \ 7 \ end{pmatrix} = 3 cdot begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix} + 4 cdot begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix} + 1 cdot begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$



With this we can calculate $A^{10}X$ quite easily, because $$A^{10}X = A^{10}(3cdot v_1 + 4cdot v_2 + 1cdot v_3) = 3cdot A^{10}v_1 + 4cdot A^{10} v_2 + A^{10}v_3$$ $$ = 3cdot lambda_2^{10} cdot v_1 + 4cdot lambda_1^{10}cdot v_2 + lambda_1^{10}cdot v_3 = 3cdot 2^{10} cdot v_1 + 4cdot 1^{10}cdot v_2 + 1^{10}cdot v_3$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
    $endgroup$
    – Kamil
    Jul 13 '15 at 22:35










  • $begingroup$
    If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
    $endgroup$
    – Krijn
    Jul 13 '15 at 22:41










  • $begingroup$
    Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
    $endgroup$
    – Kamil
    Jul 13 '15 at 22:53










  • $begingroup$
    That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
    $endgroup$
    – Krijn
    Jul 13 '15 at 22:54



















1












$begingroup$

If $P(X)=sum_{k=0}^na_kX^k$ is a polynomial and a matrix $A$ has en eigenvalue $lambda$ with eigenvector $v$, we have:
$$P(A)(v)=sum_{k=0}^na_kA^kv=sum_{k=0}^na_klambda^kv=P(lambda)v$$



Thus, $P(lambda)$ is an eigenvalue of $P(A)$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    By definition of eigenvalue:



    $$Av=lambda v$$



    for $vneq 0$ and corresponding eigenvector. So:



    $$A^{2}v=A (Av)=A(lambda v)=lambda Av=lambda lambda v=lambda^2 v$$



    The same way we can show that:



    $$A^k v=lambda^k v$$



    So:



    $$A^{10}v=lambda^{10}v$$



    $$A^{7}v=lambda^{7}v$$



    $$5A^{1}v=5lambda^{1}v$$



    If we add these three equations side by side we have:



    $$(A^{10}+A^{7}+5A)v=(lambda^{10}+lambda^7+5lambda)v$$



    So if $lambda$ is eigenvalue of $A$, then $lambda^{10}+lambda^7+5lambda$ is eigenvalue of $A^{10}+A^{7}+5A$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1359958%2ffinding-eigenvalues-of-a10-a7-5a%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      For the first question, observe that
      $$(A^{10}+A^{7}+5A)x=(lambda^{10}+lambda^7+5lambda)x$$ as I have shown in the comments.



      For the second question, you observed correctly that we have three eigenvectors, for the eigenvalues $2$, $1$ and $1$, respectively
      $$v_1 = begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix}, v_2 = begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix}, v_3= begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$$



      We see that $X = begin{pmatrix} 2\ 4 \ 7 \ end{pmatrix} = 3 cdot begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix} + 4 cdot begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix} + 1 cdot begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$



      With this we can calculate $A^{10}X$ quite easily, because $$A^{10}X = A^{10}(3cdot v_1 + 4cdot v_2 + 1cdot v_3) = 3cdot A^{10}v_1 + 4cdot A^{10} v_2 + A^{10}v_3$$ $$ = 3cdot lambda_2^{10} cdot v_1 + 4cdot lambda_1^{10}cdot v_2 + lambda_1^{10}cdot v_3 = 3cdot 2^{10} cdot v_1 + 4cdot 1^{10}cdot v_2 + 1^{10}cdot v_3$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:35










      • $begingroup$
        If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:41










      • $begingroup$
        Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:53










      • $begingroup$
        That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:54
















      2












      $begingroup$

      For the first question, observe that
      $$(A^{10}+A^{7}+5A)x=(lambda^{10}+lambda^7+5lambda)x$$ as I have shown in the comments.



      For the second question, you observed correctly that we have three eigenvectors, for the eigenvalues $2$, $1$ and $1$, respectively
      $$v_1 = begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix}, v_2 = begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix}, v_3= begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$$



      We see that $X = begin{pmatrix} 2\ 4 \ 7 \ end{pmatrix} = 3 cdot begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix} + 4 cdot begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix} + 1 cdot begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$



      With this we can calculate $A^{10}X$ quite easily, because $$A^{10}X = A^{10}(3cdot v_1 + 4cdot v_2 + 1cdot v_3) = 3cdot A^{10}v_1 + 4cdot A^{10} v_2 + A^{10}v_3$$ $$ = 3cdot lambda_2^{10} cdot v_1 + 4cdot lambda_1^{10}cdot v_2 + lambda_1^{10}cdot v_3 = 3cdot 2^{10} cdot v_1 + 4cdot 1^{10}cdot v_2 + 1^{10}cdot v_3$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:35










      • $begingroup$
        If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:41










      • $begingroup$
        Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:53










      • $begingroup$
        That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:54














      2












      2








      2





      $begingroup$

      For the first question, observe that
      $$(A^{10}+A^{7}+5A)x=(lambda^{10}+lambda^7+5lambda)x$$ as I have shown in the comments.



      For the second question, you observed correctly that we have three eigenvectors, for the eigenvalues $2$, $1$ and $1$, respectively
      $$v_1 = begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix}, v_2 = begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix}, v_3= begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$$



      We see that $X = begin{pmatrix} 2\ 4 \ 7 \ end{pmatrix} = 3 cdot begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix} + 4 cdot begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix} + 1 cdot begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$



      With this we can calculate $A^{10}X$ quite easily, because $$A^{10}X = A^{10}(3cdot v_1 + 4cdot v_2 + 1cdot v_3) = 3cdot A^{10}v_1 + 4cdot A^{10} v_2 + A^{10}v_3$$ $$ = 3cdot lambda_2^{10} cdot v_1 + 4cdot lambda_1^{10}cdot v_2 + lambda_1^{10}cdot v_3 = 3cdot 2^{10} cdot v_1 + 4cdot 1^{10}cdot v_2 + 1^{10}cdot v_3$$






      share|cite|improve this answer











      $endgroup$



      For the first question, observe that
      $$(A^{10}+A^{7}+5A)x=(lambda^{10}+lambda^7+5lambda)x$$ as I have shown in the comments.



      For the second question, you observed correctly that we have three eigenvectors, for the eigenvalues $2$, $1$ and $1$, respectively
      $$v_1 = begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix}, v_2 = begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix}, v_3= begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$$



      We see that $X = begin{pmatrix} 2\ 4 \ 7 \ end{pmatrix} = 3 cdot begin{pmatrix} frac{1}{3}\ frac{2}{3} \ 1 \ end{pmatrix} + 4 cdot begin{pmatrix} 0\ frac{1}{2} \ 1 \ end{pmatrix} + 1 cdot begin{pmatrix} 1\ 0 \ 0 \ end{pmatrix}$



      With this we can calculate $A^{10}X$ quite easily, because $$A^{10}X = A^{10}(3cdot v_1 + 4cdot v_2 + 1cdot v_3) = 3cdot A^{10}v_1 + 4cdot A^{10} v_2 + A^{10}v_3$$ $$ = 3cdot lambda_2^{10} cdot v_1 + 4cdot lambda_1^{10}cdot v_2 + lambda_1^{10}cdot v_3 = 3cdot 2^{10} cdot v_1 + 4cdot 1^{10}cdot v_2 + 1^{10}cdot v_3$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 2 '18 at 16:20









      winnie33

      32




      32










      answered Jul 13 '15 at 22:28









      KrijnKrijn

      1,146924




      1,146924












      • $begingroup$
        I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:35










      • $begingroup$
        If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:41










      • $begingroup$
        Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:53










      • $begingroup$
        That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:54


















      • $begingroup$
        I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:35










      • $begingroup$
        If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:41










      • $begingroup$
        Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
        $endgroup$
        – Kamil
        Jul 13 '15 at 22:53










      • $begingroup$
        That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
        $endgroup$
        – Krijn
        Jul 13 '15 at 22:54
















      $begingroup$
      I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
      $endgroup$
      – Kamil
      Jul 13 '15 at 22:35




      $begingroup$
      I don't understand how $v_3$ can be a different eigenvector from $v_2$, when the eigenvalue is $1$ in both cases? How did you compute $v_3$?
      $endgroup$
      – Kamil
      Jul 13 '15 at 22:35












      $begingroup$
      If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
      $endgroup$
      – Krijn
      Jul 13 '15 at 22:41




      $begingroup$
      If an eigenvalue $lambda$ has multiplicity $> 1$, such as $lambda = 1$ in our case, it can happen that there are two linearly independent eigenvectors $v$, $w$ such that $Av = lambda v$ and $Aw = lambda w$. There is an easy test for the amount of linearly independent eigenvectors that belong to a certain eigenvalue, namely: The amount of linearly independent eigenvalues for a certain eigenvalue $lambda$ is equal to the dimension of the kernel of $A - lambda I$. In our case, the dimension of the kernel of $A - 1cdot I$ is equal to $2$, therefore, there are two eigenvectors.
      $endgroup$
      – Krijn
      Jul 13 '15 at 22:41












      $begingroup$
      Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
      $endgroup$
      – Kamil
      Jul 13 '15 at 22:53




      $begingroup$
      Thanks, that was very clear. I will look for a proof of this theorem. Also, is it correct that two distinct eigenvalues can never have the same eigenvector?
      $endgroup$
      – Kamil
      Jul 13 '15 at 22:53












      $begingroup$
      That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
      $endgroup$
      – Krijn
      Jul 13 '15 at 22:54




      $begingroup$
      That is indeed correct and very easy to proof, because if $Av = lambda_1 v$ and $Av = lambda_2 v$ then of course $lambda_1 v = lambda_2 v Rightarrow lambda_1 = lambda_2$.
      $endgroup$
      – Krijn
      Jul 13 '15 at 22:54











      1












      $begingroup$

      If $P(X)=sum_{k=0}^na_kX^k$ is a polynomial and a matrix $A$ has en eigenvalue $lambda$ with eigenvector $v$, we have:
      $$P(A)(v)=sum_{k=0}^na_kA^kv=sum_{k=0}^na_klambda^kv=P(lambda)v$$



      Thus, $P(lambda)$ is an eigenvalue of $P(A)$.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        If $P(X)=sum_{k=0}^na_kX^k$ is a polynomial and a matrix $A$ has en eigenvalue $lambda$ with eigenvector $v$, we have:
        $$P(A)(v)=sum_{k=0}^na_kA^kv=sum_{k=0}^na_klambda^kv=P(lambda)v$$



        Thus, $P(lambda)$ is an eigenvalue of $P(A)$.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          If $P(X)=sum_{k=0}^na_kX^k$ is a polynomial and a matrix $A$ has en eigenvalue $lambda$ with eigenvector $v$, we have:
          $$P(A)(v)=sum_{k=0}^na_kA^kv=sum_{k=0}^na_klambda^kv=P(lambda)v$$



          Thus, $P(lambda)$ is an eigenvalue of $P(A)$.






          share|cite|improve this answer









          $endgroup$



          If $P(X)=sum_{k=0}^na_kX^k$ is a polynomial and a matrix $A$ has en eigenvalue $lambda$ with eigenvector $v$, we have:
          $$P(A)(v)=sum_{k=0}^na_kA^kv=sum_{k=0}^na_klambda^kv=P(lambda)v$$



          Thus, $P(lambda)$ is an eigenvalue of $P(A)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jul 13 '15 at 21:23









          ajotatxeajotatxe

          53.7k23890




          53.7k23890























              1












              $begingroup$

              By definition of eigenvalue:



              $$Av=lambda v$$



              for $vneq 0$ and corresponding eigenvector. So:



              $$A^{2}v=A (Av)=A(lambda v)=lambda Av=lambda lambda v=lambda^2 v$$



              The same way we can show that:



              $$A^k v=lambda^k v$$



              So:



              $$A^{10}v=lambda^{10}v$$



              $$A^{7}v=lambda^{7}v$$



              $$5A^{1}v=5lambda^{1}v$$



              If we add these three equations side by side we have:



              $$(A^{10}+A^{7}+5A)v=(lambda^{10}+lambda^7+5lambda)v$$



              So if $lambda$ is eigenvalue of $A$, then $lambda^{10}+lambda^7+5lambda$ is eigenvalue of $A^{10}+A^{7}+5A$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                By definition of eigenvalue:



                $$Av=lambda v$$



                for $vneq 0$ and corresponding eigenvector. So:



                $$A^{2}v=A (Av)=A(lambda v)=lambda Av=lambda lambda v=lambda^2 v$$



                The same way we can show that:



                $$A^k v=lambda^k v$$



                So:



                $$A^{10}v=lambda^{10}v$$



                $$A^{7}v=lambda^{7}v$$



                $$5A^{1}v=5lambda^{1}v$$



                If we add these three equations side by side we have:



                $$(A^{10}+A^{7}+5A)v=(lambda^{10}+lambda^7+5lambda)v$$



                So if $lambda$ is eigenvalue of $A$, then $lambda^{10}+lambda^7+5lambda$ is eigenvalue of $A^{10}+A^{7}+5A$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  By definition of eigenvalue:



                  $$Av=lambda v$$



                  for $vneq 0$ and corresponding eigenvector. So:



                  $$A^{2}v=A (Av)=A(lambda v)=lambda Av=lambda lambda v=lambda^2 v$$



                  The same way we can show that:



                  $$A^k v=lambda^k v$$



                  So:



                  $$A^{10}v=lambda^{10}v$$



                  $$A^{7}v=lambda^{7}v$$



                  $$5A^{1}v=5lambda^{1}v$$



                  If we add these three equations side by side we have:



                  $$(A^{10}+A^{7}+5A)v=(lambda^{10}+lambda^7+5lambda)v$$



                  So if $lambda$ is eigenvalue of $A$, then $lambda^{10}+lambda^7+5lambda$ is eigenvalue of $A^{10}+A^{7}+5A$.






                  share|cite|improve this answer









                  $endgroup$



                  By definition of eigenvalue:



                  $$Av=lambda v$$



                  for $vneq 0$ and corresponding eigenvector. So:



                  $$A^{2}v=A (Av)=A(lambda v)=lambda Av=lambda lambda v=lambda^2 v$$



                  The same way we can show that:



                  $$A^k v=lambda^k v$$



                  So:



                  $$A^{10}v=lambda^{10}v$$



                  $$A^{7}v=lambda^{7}v$$



                  $$5A^{1}v=5lambda^{1}v$$



                  If we add these three equations side by side we have:



                  $$(A^{10}+A^{7}+5A)v=(lambda^{10}+lambda^7+5lambda)v$$



                  So if $lambda$ is eigenvalue of $A$, then $lambda^{10}+lambda^7+5lambda$ is eigenvalue of $A^{10}+A^{7}+5A$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jul 13 '15 at 21:23









                  aghaagha

                  8,99641533




                  8,99641533






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1359958%2ffinding-eigenvalues-of-a10-a7-5a%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten