Laurent Series expansion about the point $z_0 = i$ of $frac{z}{z^2+1}$
$begingroup$
I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.
We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$
This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:
$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$
We want to re-write everything in terms of $z-i$:
$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$
Using the geometric series this gives:
$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?
complex-analysis taylor-expansion laurent-series
$endgroup$
add a comment |
$begingroup$
I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.
We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$
This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:
$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$
We want to re-write everything in terms of $z-i$:
$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$
Using the geometric series this gives:
$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?
complex-analysis taylor-expansion laurent-series
$endgroup$
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
1
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39
add a comment |
$begingroup$
I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.
We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$
This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:
$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$
We want to re-write everything in terms of $z-i$:
$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$
Using the geometric series this gives:
$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?
complex-analysis taylor-expansion laurent-series
$endgroup$
I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.
We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$
This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:
$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$
We want to re-write everything in terms of $z-i$:
$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$
Using the geometric series this gives:
$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?
complex-analysis taylor-expansion laurent-series
complex-analysis taylor-expansion laurent-series
edited Dec 2 '18 at 19:51
Lorenzo B.
1,8402520
1,8402520
asked Dec 2 '18 at 18:21
Jane DoeJane Doe
19112
19112
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
1
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39
add a comment |
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
1
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
1
1
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$
$endgroup$
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
add a comment |
$begingroup$
Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023007%2flaurent-series-expansion-about-the-point-z-0-i-of-fraczz21%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$
$endgroup$
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
add a comment |
$begingroup$
begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$
$endgroup$
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
add a comment |
$begingroup$
begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$
$endgroup$
begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$
answered Dec 2 '18 at 22:19
user621367
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
add a comment |
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
$begingroup$
Thank you, that way makes much more sense!
$endgroup$
– Jane Doe
Dec 3 '18 at 15:27
add a comment |
$begingroup$
Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
$endgroup$
add a comment |
$begingroup$
Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
$endgroup$
add a comment |
$begingroup$
Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
$endgroup$
Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$
answered Dec 2 '18 at 18:42
Tito EliatronTito Eliatron
1,448622
1,448622
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023007%2flaurent-series-expansion-about-the-point-z-0-i-of-fraczz21%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27
1
$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33
$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38
$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39