Laurent Series expansion about the point $z_0 = i$ of $frac{z}{z^2+1}$












1












$begingroup$


I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.



We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$



This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:



$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$



We want to re-write everything in terms of $z-i$:



$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$



Using the geometric series this gives:



$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:



$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$



But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f(i)$ is not defined
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:27






  • 1




    $begingroup$
    @TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
    $endgroup$
    – Jane Doe
    Dec 2 '18 at 18:33












  • $begingroup$
    Sorry, I read Taylor, not Laurent.
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:38












  • $begingroup$
    You can write $z=(z-i)+i$ and proceed
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:39
















1












$begingroup$


I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.



We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$



This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:



$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$



We want to re-write everything in terms of $z-i$:



$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$



Using the geometric series this gives:



$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:



$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$



But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f(i)$ is not defined
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:27






  • 1




    $begingroup$
    @TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
    $endgroup$
    – Jane Doe
    Dec 2 '18 at 18:33












  • $begingroup$
    Sorry, I read Taylor, not Laurent.
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:38












  • $begingroup$
    You can write $z=(z-i)+i$ and proceed
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:39














1












1








1





$begingroup$


I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.



We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$



This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:



$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$



We want to re-write everything in terms of $z-i$:



$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$



Using the geometric series this gives:



$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:



$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$



But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?










share|cite|improve this question











$endgroup$




I am trying to construct the Laurent series expansion of $f(z) = frac{z}{z^2+1}$ about $z_0 = i$ in the region ${z in mathbb{C}: 0 < |z - i| < 2}$ but I am stuck.



We can re-write $f(z) = dfrac{z}{z^2+1} = dfrac{z}{(z-i)(z+i)}$



This allows us to see more easily that there are first order poles at $pm i$. We can use partial fractions to obtain:



$$frac{1}{(z+i)(z-i)} = frac{i}{2(z+i)} - frac{i}{2(z-i)}$$



We want to re-write everything in terms of $z-i$:



$$frac{1}{z+i} = frac{1}{2i + (z - i)} = frac{1}{2i}left(frac{1}{1+frac{1}{2i}(z-i)}right)$$



Using the geometric series this gives:



$$ = frac{-i}{2} left(sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right)$$
Then we have that:



$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$



But the problem is, I still have a term in the form of $z$ rather than $z-i$. How do I proceed from here?







complex-analysis taylor-expansion laurent-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 2 '18 at 19:51









Lorenzo B.

1,8402520




1,8402520










asked Dec 2 '18 at 18:21









Jane DoeJane Doe

19112




19112












  • $begingroup$
    $f(i)$ is not defined
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:27






  • 1




    $begingroup$
    @TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
    $endgroup$
    – Jane Doe
    Dec 2 '18 at 18:33












  • $begingroup$
    Sorry, I read Taylor, not Laurent.
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:38












  • $begingroup$
    You can write $z=(z-i)+i$ and proceed
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:39


















  • $begingroup$
    $f(i)$ is not defined
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:27






  • 1




    $begingroup$
    @TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
    $endgroup$
    – Jane Doe
    Dec 2 '18 at 18:33












  • $begingroup$
    Sorry, I read Taylor, not Laurent.
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:38












  • $begingroup$
    You can write $z=(z-i)+i$ and proceed
    $endgroup$
    – Tito Eliatron
    Dec 2 '18 at 18:39
















$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27




$begingroup$
$f(i)$ is not defined
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:27




1




1




$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33






$begingroup$
@TitoEliatron You’re correct but that’s the use of Laurent series howellkb.uah.edu/MathPhysicsText/Complex_Variables/Laurent.pdf
$endgroup$
– Jane Doe
Dec 2 '18 at 18:33














$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38






$begingroup$
Sorry, I read Taylor, not Laurent.
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:38














$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39




$begingroup$
You can write $z=(z-i)+i$ and proceed
$endgroup$
– Tito Eliatron
Dec 2 '18 at 18:39










2 Answers
2






active

oldest

votes


















1












$begingroup$

begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
\&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}
begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
in the region ${zinmathbb{C}:0<|z-i|<2}.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you, that way makes much more sense!
    $endgroup$
    – Jane Doe
    Dec 3 '18 at 15:27



















0












$begingroup$

Following your argument,
$$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023007%2flaurent-series-expansion-about-the-point-z-0-i-of-fraczz21%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
    begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
    \&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}
    begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
    in the region ${zinmathbb{C}:0<|z-i|<2}.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you, that way makes much more sense!
      $endgroup$
      – Jane Doe
      Dec 3 '18 at 15:27
















    1












    $begingroup$

    begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
    begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
    \&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}
    begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
    in the region ${zinmathbb{C}:0<|z-i|<2}.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you, that way makes much more sense!
      $endgroup$
      – Jane Doe
      Dec 3 '18 at 15:27














    1












    1








    1





    $begingroup$

    begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
    begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
    \&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}
    begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
    in the region ${zinmathbb{C}:0<|z-i|<2}.$






    share|cite|improve this answer









    $endgroup$



    begin{align}&f(z)=frac{z}{z^2+1}=frac{A}{z-i}+frac{B}{z+i}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{z+i}end{align}
    begin{align}&A=Res[f,i]=limlimits_{zrightarrow i}frac{z}{z+i}=frac{1}{2}
    \&B=Res[f,-i]=limlimits_{zrightarrow -i}frac{z}{z-i}=frac{1}{2}end{align}
    begin{align}f(z)&= frac{1}{2}frac{1}{z-i}+frac{1}{2}frac{1}{2ileft(1+frac{z-i}{2i}right)}\&=frac{1}{2}frac{1}{z-i}+frac{1}{2}sum_{n=0}^{infty}frac{(-1)^n (z-i)^n}{(2i)^{n+1}}end{align}begin{align}=&frac{1}{2}frac{1}{z-i}-frac{i}{4}+frac{1}{8}(z-i)\&+frac{i}{16}(z-i)^2+cdotsend{align}
    in the region ${zinmathbb{C}:0<|z-i|<2}.$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 2 '18 at 22:19







    user621367



















    • $begingroup$
      Thank you, that way makes much more sense!
      $endgroup$
      – Jane Doe
      Dec 3 '18 at 15:27


















    • $begingroup$
      Thank you, that way makes much more sense!
      $endgroup$
      – Jane Doe
      Dec 3 '18 at 15:27
















    $begingroup$
    Thank you, that way makes much more sense!
    $endgroup$
    – Jane Doe
    Dec 3 '18 at 15:27




    $begingroup$
    Thank you, that way makes much more sense!
    $endgroup$
    – Jane Doe
    Dec 3 '18 at 15:27











    0












    $begingroup$

    Following your argument,
    $$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Following your argument,
      $$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Following your argument,
        $$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$






        share|cite|improve this answer









        $endgroup$



        Following your argument,
        $$f(z) = zleft(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right) = (z-i+i)left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)\ = left(frac{i}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^{n+1}}{(2i)^n}right) - 1right) -left(frac{1}{2}right)left(left(frac{-i}{2}sum_{n=0}^{infty} (-1)^n frac{(z-i)^n}{(2i)^n}right) - frac{1}{z-i}right)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 2 '18 at 18:42









        Tito EliatronTito Eliatron

        1,448622




        1,448622






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023007%2flaurent-series-expansion-about-the-point-z-0-i-of-fraczz21%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten