Misuse of inverse function theorem
$begingroup$
Let $U={binom{u}{v}in mathbb{R}^2|0<v<u}$. Let $f:Utomathbb{R}^2, f(u,v)=(u+v,uv)$. Show that $f$ has a global reverse function, find $g=f^{-1}$ and its domain.
Not a valid solution: For any $(u,v)inmathbb{R}^2$,
$$
\ Df(u,v)=begin{pmatrix}
1& 1\
v& u
end{pmatrix} ne0 Leftrightarrow une v
$$
then $Df(u,v)$ is reversable for any $(u,v)in U$. Thus, $forall (u,v)in U$,
$$
\ g(u,v)=frac{operatorname{adj}(Df(u,v))}{operatorname{det}(Df(u,v))}=frac{1}{u-v}cdot begin{pmatrix}
u & -1 \
-v & 1 end{pmatrix}
$$ I understand this is not the solution, but I don't understand where is the mistake.
algebra-precalculus multivariable-calculus inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
Let $U={binom{u}{v}in mathbb{R}^2|0<v<u}$. Let $f:Utomathbb{R}^2, f(u,v)=(u+v,uv)$. Show that $f$ has a global reverse function, find $g=f^{-1}$ and its domain.
Not a valid solution: For any $(u,v)inmathbb{R}^2$,
$$
\ Df(u,v)=begin{pmatrix}
1& 1\
v& u
end{pmatrix} ne0 Leftrightarrow une v
$$
then $Df(u,v)$ is reversable for any $(u,v)in U$. Thus, $forall (u,v)in U$,
$$
\ g(u,v)=frac{operatorname{adj}(Df(u,v))}{operatorname{det}(Df(u,v))}=frac{1}{u-v}cdot begin{pmatrix}
u & -1 \
-v & 1 end{pmatrix}
$$ I understand this is not the solution, but I don't understand where is the mistake.
algebra-precalculus multivariable-calculus inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
Let $U={binom{u}{v}in mathbb{R}^2|0<v<u}$. Let $f:Utomathbb{R}^2, f(u,v)=(u+v,uv)$. Show that $f$ has a global reverse function, find $g=f^{-1}$ and its domain.
Not a valid solution: For any $(u,v)inmathbb{R}^2$,
$$
\ Df(u,v)=begin{pmatrix}
1& 1\
v& u
end{pmatrix} ne0 Leftrightarrow une v
$$
then $Df(u,v)$ is reversable for any $(u,v)in U$. Thus, $forall (u,v)in U$,
$$
\ g(u,v)=frac{operatorname{adj}(Df(u,v))}{operatorname{det}(Df(u,v))}=frac{1}{u-v}cdot begin{pmatrix}
u & -1 \
-v & 1 end{pmatrix}
$$ I understand this is not the solution, but I don't understand where is the mistake.
algebra-precalculus multivariable-calculus inverse-function-theorem
$endgroup$
Let $U={binom{u}{v}in mathbb{R}^2|0<v<u}$. Let $f:Utomathbb{R}^2, f(u,v)=(u+v,uv)$. Show that $f$ has a global reverse function, find $g=f^{-1}$ and its domain.
Not a valid solution: For any $(u,v)inmathbb{R}^2$,
$$
\ Df(u,v)=begin{pmatrix}
1& 1\
v& u
end{pmatrix} ne0 Leftrightarrow une v
$$
then $Df(u,v)$ is reversable for any $(u,v)in U$. Thus, $forall (u,v)in U$,
$$
\ g(u,v)=frac{operatorname{adj}(Df(u,v))}{operatorname{det}(Df(u,v))}=frac{1}{u-v}cdot begin{pmatrix}
u & -1 \
-v & 1 end{pmatrix}
$$ I understand this is not the solution, but I don't understand where is the mistake.
algebra-precalculus multivariable-calculus inverse-function-theorem
algebra-precalculus multivariable-calculus inverse-function-theorem
asked Dec 2 '18 at 19:37
J. DoeJ. Doe
1637
1637
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You've found the inverse of $Df$, not the inverse of $f$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023085%2fmisuse-of-inverse-function-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You've found the inverse of $Df$, not the inverse of $f$.
$endgroup$
add a comment |
$begingroup$
You've found the inverse of $Df$, not the inverse of $f$.
$endgroup$
add a comment |
$begingroup$
You've found the inverse of $Df$, not the inverse of $f$.
$endgroup$
You've found the inverse of $Df$, not the inverse of $f$.
answered Dec 2 '18 at 19:41
TedTed
21.5k13260
21.5k13260
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023085%2fmisuse-of-inverse-function-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown