Galois group of $f(x)=x^5+2x+1inmathbb{Z}_3[x]$
$begingroup$
consider $f(x)=x^5+2x+1inmathbb{Z}_3[x]$,what is the splitting field of $f$ and its Galois group?
I know it is a Galois extension. But i do not know the degree of the extension for i have no idea of the root of $f$,
the answer is the cyclic group of order 5.
any idea will be helpful!
abstract-algebra galois-theory finite-fields
$endgroup$
add a comment |
$begingroup$
consider $f(x)=x^5+2x+1inmathbb{Z}_3[x]$,what is the splitting field of $f$ and its Galois group?
I know it is a Galois extension. But i do not know the degree of the extension for i have no idea of the root of $f$,
the answer is the cyclic group of order 5.
any idea will be helpful!
abstract-algebra galois-theory finite-fields
$endgroup$
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
1
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09
add a comment |
$begingroup$
consider $f(x)=x^5+2x+1inmathbb{Z}_3[x]$,what is the splitting field of $f$ and its Galois group?
I know it is a Galois extension. But i do not know the degree of the extension for i have no idea of the root of $f$,
the answer is the cyclic group of order 5.
any idea will be helpful!
abstract-algebra galois-theory finite-fields
$endgroup$
consider $f(x)=x^5+2x+1inmathbb{Z}_3[x]$,what is the splitting field of $f$ and its Galois group?
I know it is a Galois extension. But i do not know the degree of the extension for i have no idea of the root of $f$,
the answer is the cyclic group of order 5.
any idea will be helpful!
abstract-algebra galois-theory finite-fields
abstract-algebra galois-theory finite-fields
asked Dec 1 '18 at 8:39
yufeng luyufeng lu
353
353
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
1
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09
add a comment |
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
1
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
1
1
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $f$ is irreducible then $Bbb{F}_3[x]/(f)$ is a field of $3^5$ elements. Since all fields of $3^5$ elements are isomorphic, adjoining any root of $f$ yields the same field (up to isomorphism) and hence this field is a splitting field of $f$, and so
$$|operatorname{Gal}(f)|=[Bbb{F}_3[x]/(f):Bbb{F}_3]=5.$$
Every group of order $5$ is cyclic.
$endgroup$
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
add a comment |
$begingroup$
Hint: if $f$ is irriducible then you can consider the field exstension $F'=Bbb Z_3[x]/I$, where $I:=(f(x))$, the ideal generated by $f$. Now for the theorem of Kronecker exist a root $alpha$ of $f$ ( $alpha:= x+I$). The elements of $F'$ are $$F'={a+balpha+calpha ^2+dalpha ^3+ealpha ^4 : a,b,c,d,e in Bbb Z_3[x]}.$$ Using the euclidean division we obtain: $$x^5+2x+1=(x^4+alpha x^3+alpha ^2x^2+alpha ^3x+(2+alpha ^4))(x-alpha ).$$ Now yuo can prove that the other roots belong to $F'$. This show that $F'$ is the splitting field of $f$ and that $G(F'/F)=Z_5$.
$endgroup$
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021128%2fgalois-group-of-fx-x52x1-in-mathbbz-3x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $f$ is irreducible then $Bbb{F}_3[x]/(f)$ is a field of $3^5$ elements. Since all fields of $3^5$ elements are isomorphic, adjoining any root of $f$ yields the same field (up to isomorphism) and hence this field is a splitting field of $f$, and so
$$|operatorname{Gal}(f)|=[Bbb{F}_3[x]/(f):Bbb{F}_3]=5.$$
Every group of order $5$ is cyclic.
$endgroup$
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
add a comment |
$begingroup$
If $f$ is irreducible then $Bbb{F}_3[x]/(f)$ is a field of $3^5$ elements. Since all fields of $3^5$ elements are isomorphic, adjoining any root of $f$ yields the same field (up to isomorphism) and hence this field is a splitting field of $f$, and so
$$|operatorname{Gal}(f)|=[Bbb{F}_3[x]/(f):Bbb{F}_3]=5.$$
Every group of order $5$ is cyclic.
$endgroup$
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
add a comment |
$begingroup$
If $f$ is irreducible then $Bbb{F}_3[x]/(f)$ is a field of $3^5$ elements. Since all fields of $3^5$ elements are isomorphic, adjoining any root of $f$ yields the same field (up to isomorphism) and hence this field is a splitting field of $f$, and so
$$|operatorname{Gal}(f)|=[Bbb{F}_3[x]/(f):Bbb{F}_3]=5.$$
Every group of order $5$ is cyclic.
$endgroup$
If $f$ is irreducible then $Bbb{F}_3[x]/(f)$ is a field of $3^5$ elements. Since all fields of $3^5$ elements are isomorphic, adjoining any root of $f$ yields the same field (up to isomorphism) and hence this field is a splitting field of $f$, and so
$$|operatorname{Gal}(f)|=[Bbb{F}_3[x]/(f):Bbb{F}_3]=5.$$
Every group of order $5$ is cyclic.
edited Dec 2 '18 at 14:42
answered Dec 2 '18 at 14:37
ServaesServaes
22.5k33793
22.5k33793
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
add a comment |
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
if $alpha beta$are roots of $f$, then $mathbb{F}_3[alpha]$ is isomorphism to $mathbb{F}_3[beta]$.but it does not mean that $alpha in mathbb{F}_3[beta]$.
$endgroup$
– yufeng lu
Dec 3 '18 at 14:54
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
@yufenglu Actually, it does; if $alphanotinBbb{F}_3[beta]$ then $Bbb{F}_3[alpha,beta]$ is a field containing two distinct subfields of $3^5$ elements. But any element of a field of $3^5$ elements satisfies $x^{3^5}=x$, so $$Bbb{F}_3[alpha]={xinBbb{F}_3[alpha,beta]: x^{3^5}=x}=Bbb{F}_3[beta],$$ because any field contains at most $3^5$ elements satisfying $x^{3^5}=x$.
$endgroup$
– Servaes
Dec 3 '18 at 15:58
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
$begingroup$
i got the point. thanks
$endgroup$
– yufeng lu
Dec 4 '18 at 14:56
add a comment |
$begingroup$
Hint: if $f$ is irriducible then you can consider the field exstension $F'=Bbb Z_3[x]/I$, where $I:=(f(x))$, the ideal generated by $f$. Now for the theorem of Kronecker exist a root $alpha$ of $f$ ( $alpha:= x+I$). The elements of $F'$ are $$F'={a+balpha+calpha ^2+dalpha ^3+ealpha ^4 : a,b,c,d,e in Bbb Z_3[x]}.$$ Using the euclidean division we obtain: $$x^5+2x+1=(x^4+alpha x^3+alpha ^2x^2+alpha ^3x+(2+alpha ^4))(x-alpha ).$$ Now yuo can prove that the other roots belong to $F'$. This show that $F'$ is the splitting field of $f$ and that $G(F'/F)=Z_5$.
$endgroup$
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
add a comment |
$begingroup$
Hint: if $f$ is irriducible then you can consider the field exstension $F'=Bbb Z_3[x]/I$, where $I:=(f(x))$, the ideal generated by $f$. Now for the theorem of Kronecker exist a root $alpha$ of $f$ ( $alpha:= x+I$). The elements of $F'$ are $$F'={a+balpha+calpha ^2+dalpha ^3+ealpha ^4 : a,b,c,d,e in Bbb Z_3[x]}.$$ Using the euclidean division we obtain: $$x^5+2x+1=(x^4+alpha x^3+alpha ^2x^2+alpha ^3x+(2+alpha ^4))(x-alpha ).$$ Now yuo can prove that the other roots belong to $F'$. This show that $F'$ is the splitting field of $f$ and that $G(F'/F)=Z_5$.
$endgroup$
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
add a comment |
$begingroup$
Hint: if $f$ is irriducible then you can consider the field exstension $F'=Bbb Z_3[x]/I$, where $I:=(f(x))$, the ideal generated by $f$. Now for the theorem of Kronecker exist a root $alpha$ of $f$ ( $alpha:= x+I$). The elements of $F'$ are $$F'={a+balpha+calpha ^2+dalpha ^3+ealpha ^4 : a,b,c,d,e in Bbb Z_3[x]}.$$ Using the euclidean division we obtain: $$x^5+2x+1=(x^4+alpha x^3+alpha ^2x^2+alpha ^3x+(2+alpha ^4))(x-alpha ).$$ Now yuo can prove that the other roots belong to $F'$. This show that $F'$ is the splitting field of $f$ and that $G(F'/F)=Z_5$.
$endgroup$
Hint: if $f$ is irriducible then you can consider the field exstension $F'=Bbb Z_3[x]/I$, where $I:=(f(x))$, the ideal generated by $f$. Now for the theorem of Kronecker exist a root $alpha$ of $f$ ( $alpha:= x+I$). The elements of $F'$ are $$F'={a+balpha+calpha ^2+dalpha ^3+ealpha ^4 : a,b,c,d,e in Bbb Z_3[x]}.$$ Using the euclidean division we obtain: $$x^5+2x+1=(x^4+alpha x^3+alpha ^2x^2+alpha ^3x+(2+alpha ^4))(x-alpha ).$$ Now yuo can prove that the other roots belong to $F'$. This show that $F'$ is the splitting field of $f$ and that $G(F'/F)=Z_5$.
answered Dec 2 '18 at 13:30
Domenico VuonoDomenico Vuono
2,3161523
2,3161523
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
add a comment |
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
what is the root of $(x^5+2x+1)/(x-alpha)$?
$endgroup$
– yufeng lu
Dec 3 '18 at 14:47
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
@yufenglu use the fact that $alpha ^5+2alpha+1=0$
$endgroup$
– Domenico Vuono
Dec 3 '18 at 20:16
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
$begingroup$
what are the other roots besides the $alpha$?
$endgroup$
– yufeng lu
Dec 4 '18 at 14:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021128%2fgalois-group-of-fx-x52x1-in-mathbbz-3x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Since $f$ doesn't have root in $Bbb Z_3$, it is reducible iff an irreducible monic quadratic polynomial divides it. Without any further idea, I'd list all these quadratics and see if they divide $f$..
$endgroup$
– Berci
Dec 1 '18 at 8:57
1
$begingroup$
yes, we can prove that $f$ is irreducible
$endgroup$
– yufeng lu
Dec 2 '18 at 13:09