Probability of a single trial within binomial experiment vs. stand-alone bernoulli experiment
When a flip a coin several times, each throw is independent from another. In other words, my coin does not know what came out previous time. So, each next flip the result is unpredictable and random. Now, suppose I flipped a fair coin three times and got each time a head (head-head-head). Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail. But each flip is an independent event - the coin does not know what came out last time.
How this paradox is resolved?
Many thanks!
probability binomial-distribution paradoxes
add a comment |
When a flip a coin several times, each throw is independent from another. In other words, my coin does not know what came out previous time. So, each next flip the result is unpredictable and random. Now, suppose I flipped a fair coin three times and got each time a head (head-head-head). Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail. But each flip is an independent event - the coin does not know what came out last time.
How this paradox is resolved?
Many thanks!
probability binomial-distribution paradoxes
3
I see no paradox, given trials are independent.
– coffeemath
2 hours ago
add a comment |
When a flip a coin several times, each throw is independent from another. In other words, my coin does not know what came out previous time. So, each next flip the result is unpredictable and random. Now, suppose I flipped a fair coin three times and got each time a head (head-head-head). Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail. But each flip is an independent event - the coin does not know what came out last time.
How this paradox is resolved?
Many thanks!
probability binomial-distribution paradoxes
When a flip a coin several times, each throw is independent from another. In other words, my coin does not know what came out previous time. So, each next flip the result is unpredictable and random. Now, suppose I flipped a fair coin three times and got each time a head (head-head-head). Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail. But each flip is an independent event - the coin does not know what came out last time.
How this paradox is resolved?
Many thanks!
probability binomial-distribution paradoxes
probability binomial-distribution paradoxes
edited 1 hour ago
Eevee Trainer
3,708326
3,708326
asked 2 hours ago
John
856
856
3
I see no paradox, given trials are independent.
– coffeemath
2 hours ago
add a comment |
3
I see no paradox, given trials are independent.
– coffeemath
2 hours ago
3
3
I see no paradox, given trials are independent.
– coffeemath
2 hours ago
I see no paradox, given trials are independent.
– coffeemath
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
If you flipped a fair coin three times and got heads each time, then on the next toss your probability of getting heads is $1/2$. The fact that you just flipped three heads in a row is irrelevant. There is no paradox.
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
add a comment |
Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail.
This marks the error.
Granted, there is no paradox - your error is known as the gambler's fallacy (or Monte Carlo fallacy). By assuming that tails is more likely, you assume that the trials are not independent even though they are. The fallacy is then that you feel the events are dependent, when they're not.
This was actually touched on in a recent Numberphile video somewhat: we think that streaks or heads of tails is nonrandom, i.e. would be a hint or sign of dependence or bias, when really they're not.
So there is no paradox, just bad intuition because of how human intuition tends to work.
add a comment |
"...so I can expect the on fourth throw to have higher chances to get finally a tail"
By independence there is no reason at all for expecting that, so there is no paradox.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053677%2fprobability-of-a-single-trial-within-binomial-experiment-vs-stand-alone-bernoul%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
If you flipped a fair coin three times and got heads each time, then on the next toss your probability of getting heads is $1/2$. The fact that you just flipped three heads in a row is irrelevant. There is no paradox.
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
add a comment |
If you flipped a fair coin three times and got heads each time, then on the next toss your probability of getting heads is $1/2$. The fact that you just flipped three heads in a row is irrelevant. There is no paradox.
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
add a comment |
If you flipped a fair coin three times and got heads each time, then on the next toss your probability of getting heads is $1/2$. The fact that you just flipped three heads in a row is irrelevant. There is no paradox.
If you flipped a fair coin three times and got heads each time, then on the next toss your probability of getting heads is $1/2$. The fact that you just flipped three heads in a row is irrelevant. There is no paradox.
answered 2 hours ago
littleO
28.9k644106
28.9k644106
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
add a comment |
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
But what if I look retrospectively on the whole sequence? If I did get 4 gets, I would said that how lucky I was to get 4 out of 4 heads. But if I received fourth tail, I would say that 3 out of 4 heads is not so low chances.
– John
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
@John The probability on getting $4$ heads by $4$ throws is exactly the same as getting at first $3$ heads and then as last a tail. Also in that case you can say: "how lucky I was to get $3$ heads at first and then a tail as last."
– drhab
1 hour ago
add a comment |
Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail.
This marks the error.
Granted, there is no paradox - your error is known as the gambler's fallacy (or Monte Carlo fallacy). By assuming that tails is more likely, you assume that the trials are not independent even though they are. The fallacy is then that you feel the events are dependent, when they're not.
This was actually touched on in a recent Numberphile video somewhat: we think that streaks or heads of tails is nonrandom, i.e. would be a hint or sign of dependence or bias, when really they're not.
So there is no paradox, just bad intuition because of how human intuition tends to work.
add a comment |
Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail.
This marks the error.
Granted, there is no paradox - your error is known as the gambler's fallacy (or Monte Carlo fallacy). By assuming that tails is more likely, you assume that the trials are not independent even though they are. The fallacy is then that you feel the events are dependent, when they're not.
This was actually touched on in a recent Numberphile video somewhat: we think that streaks or heads of tails is nonrandom, i.e. would be a hint or sign of dependence or bias, when really they're not.
So there is no paradox, just bad intuition because of how human intuition tends to work.
add a comment |
Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail.
This marks the error.
Granted, there is no paradox - your error is known as the gambler's fallacy (or Monte Carlo fallacy). By assuming that tails is more likely, you assume that the trials are not independent even though they are. The fallacy is then that you feel the events are dependent, when they're not.
This was actually touched on in a recent Numberphile video somewhat: we think that streaks or heads of tails is nonrandom, i.e. would be a hint or sign of dependence or bias, when really they're not.
So there is no paradox, just bad intuition because of how human intuition tends to work.
Intuitively, the head cannot come out “head” all the time, so I can expect the on fourth throw to have higher chances to get finally a tail.
This marks the error.
Granted, there is no paradox - your error is known as the gambler's fallacy (or Monte Carlo fallacy). By assuming that tails is more likely, you assume that the trials are not independent even though they are. The fallacy is then that you feel the events are dependent, when they're not.
This was actually touched on in a recent Numberphile video somewhat: we think that streaks or heads of tails is nonrandom, i.e. would be a hint or sign of dependence or bias, when really they're not.
So there is no paradox, just bad intuition because of how human intuition tends to work.
edited 1 hour ago
answered 2 hours ago
Eevee Trainer
3,708326
3,708326
add a comment |
add a comment |
"...so I can expect the on fourth throw to have higher chances to get finally a tail"
By independence there is no reason at all for expecting that, so there is no paradox.
add a comment |
"...so I can expect the on fourth throw to have higher chances to get finally a tail"
By independence there is no reason at all for expecting that, so there is no paradox.
add a comment |
"...so I can expect the on fourth throw to have higher chances to get finally a tail"
By independence there is no reason at all for expecting that, so there is no paradox.
"...so I can expect the on fourth throw to have higher chances to get finally a tail"
By independence there is no reason at all for expecting that, so there is no paradox.
answered 1 hour ago
drhab
97.4k544128
97.4k544128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053677%2fprobability-of-a-single-trial-within-binomial-experiment-vs-stand-alone-bernoul%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
I see no paradox, given trials are independent.
– coffeemath
2 hours ago