How to show that the image of a complete metric space under an isometry is closed?
$begingroup$
Let $f,,:,, (M,d) rightarrow (N,sigma)$ be an isometry, that is
$$
sigma(f(x),f(y))=d(x,y)
$$
for all $x,y in M$.
If $(M,d)$ is complete, show that $f(M)$ is closed in $(N,sigma)$.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f,,:,, (M,d) rightarrow (N,sigma)$ be an isometry, that is
$$
sigma(f(x),f(y))=d(x,y)
$$
for all $x,y in M$.
If $(M,d)$ is complete, show that $f(M)$ is closed in $(N,sigma)$.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f,,:,, (M,d) rightarrow (N,sigma)$ be an isometry, that is
$$
sigma(f(x),f(y))=d(x,y)
$$
for all $x,y in M$.
If $(M,d)$ is complete, show that $f(M)$ is closed in $(N,sigma)$.
real-analysis
$endgroup$
Let $f,,:,, (M,d) rightarrow (N,sigma)$ be an isometry, that is
$$
sigma(f(x),f(y))=d(x,y)
$$
for all $x,y in M$.
If $(M,d)$ is complete, show that $f(M)$ is closed in $(N,sigma)$.
real-analysis
real-analysis
asked Dec 9 '18 at 6:46
SepideSepide
3038
3038
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $yin N$ be a limit point of $f(M)$. Then there's a sequence $(f(x_n))in f(M)$ converging to $y$. Then $(f(x_n))$ is Cauchy in $(N,sigma)$. Since $f$ is an isometry, $(x_n)$ is Cauchy in $(M,d)$. Since $(M,d)$ is complete, $(x_n)$ converges to $xin M$. Then $f(x)=lim_{ntoinfty}f(x_n)=y$. Thus $yin f(M)$. So $f(M)$ is closed.
$endgroup$
add a comment |
$begingroup$
Let $yin N$. If $x_nin M$ such that $f(x_n)to y$, then ${f(x_n)}_n$ is convergent, hence is Cauchy, hence ${x_n}_n$ is Cauchy, hence is convergent to some $x$. Then $f(x_n)to f(x)$ and so $y=f(x)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032089%2fhow-to-show-that-the-image-of-a-complete-metric-space-under-an-isometry-is-close%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $yin N$ be a limit point of $f(M)$. Then there's a sequence $(f(x_n))in f(M)$ converging to $y$. Then $(f(x_n))$ is Cauchy in $(N,sigma)$. Since $f$ is an isometry, $(x_n)$ is Cauchy in $(M,d)$. Since $(M,d)$ is complete, $(x_n)$ converges to $xin M$. Then $f(x)=lim_{ntoinfty}f(x_n)=y$. Thus $yin f(M)$. So $f(M)$ is closed.
$endgroup$
add a comment |
$begingroup$
Let $yin N$ be a limit point of $f(M)$. Then there's a sequence $(f(x_n))in f(M)$ converging to $y$. Then $(f(x_n))$ is Cauchy in $(N,sigma)$. Since $f$ is an isometry, $(x_n)$ is Cauchy in $(M,d)$. Since $(M,d)$ is complete, $(x_n)$ converges to $xin M$. Then $f(x)=lim_{ntoinfty}f(x_n)=y$. Thus $yin f(M)$. So $f(M)$ is closed.
$endgroup$
add a comment |
$begingroup$
Let $yin N$ be a limit point of $f(M)$. Then there's a sequence $(f(x_n))in f(M)$ converging to $y$. Then $(f(x_n))$ is Cauchy in $(N,sigma)$. Since $f$ is an isometry, $(x_n)$ is Cauchy in $(M,d)$. Since $(M,d)$ is complete, $(x_n)$ converges to $xin M$. Then $f(x)=lim_{ntoinfty}f(x_n)=y$. Thus $yin f(M)$. So $f(M)$ is closed.
$endgroup$
Let $yin N$ be a limit point of $f(M)$. Then there's a sequence $(f(x_n))in f(M)$ converging to $y$. Then $(f(x_n))$ is Cauchy in $(N,sigma)$. Since $f$ is an isometry, $(x_n)$ is Cauchy in $(M,d)$. Since $(M,d)$ is complete, $(x_n)$ converges to $xin M$. Then $f(x)=lim_{ntoinfty}f(x_n)=y$. Thus $yin f(M)$. So $f(M)$ is closed.
answered Dec 9 '18 at 7:16
Chris CusterChris Custer
13.2k3827
13.2k3827
add a comment |
add a comment |
$begingroup$
Let $yin N$. If $x_nin M$ such that $f(x_n)to y$, then ${f(x_n)}_n$ is convergent, hence is Cauchy, hence ${x_n}_n$ is Cauchy, hence is convergent to some $x$. Then $f(x_n)to f(x)$ and so $y=f(x)$.
$endgroup$
add a comment |
$begingroup$
Let $yin N$. If $x_nin M$ such that $f(x_n)to y$, then ${f(x_n)}_n$ is convergent, hence is Cauchy, hence ${x_n}_n$ is Cauchy, hence is convergent to some $x$. Then $f(x_n)to f(x)$ and so $y=f(x)$.
$endgroup$
add a comment |
$begingroup$
Let $yin N$. If $x_nin M$ such that $f(x_n)to y$, then ${f(x_n)}_n$ is convergent, hence is Cauchy, hence ${x_n}_n$ is Cauchy, hence is convergent to some $x$. Then $f(x_n)to f(x)$ and so $y=f(x)$.
$endgroup$
Let $yin N$. If $x_nin M$ such that $f(x_n)to y$, then ${f(x_n)}_n$ is convergent, hence is Cauchy, hence ${x_n}_n$ is Cauchy, hence is convergent to some $x$. Then $f(x_n)to f(x)$ and so $y=f(x)$.
answered Dec 9 '18 at 6:56
Hagen von EitzenHagen von Eitzen
279k23271503
279k23271503
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032089%2fhow-to-show-that-the-image-of-a-complete-metric-space-under-an-isometry-is-close%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown