Bessel integral invovling algebraic and hyperbolic functions
$begingroup$
I am desperate in evaluating the following Hankel transform
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} frac{cosh(ky)}{cosh(k)} kmathrm{d} k,
$$
where $J_0(kr)$ is the Bessel function of the first kind and where the interest is focused on where $k$ is small.
By expanding the hyperbolic function about $k=0$,
$$
frac{cosh(ky)}{cosh(k)} = 1 + textit{O}(k^2),
$$
and the preceding integral reduces to
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k = K_0(xi r),
$$
where $K_0(xi r)$ is the modified Bessel function of the second kind.
The problem is the approximation for the hyperbolic function is valid only about $k=0$, while the integral is over the $kin(0,infty)$. How can I justify this controversy?
Or, perhaps it is acceptable to evaluate
$$
int_{0}^{1} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k,
$$
instead, but how to do this?
Thanking you and, please, could you help me...
Wang Zhe
definite-integrals bessel-functions integral-transforms
$endgroup$
add a comment |
$begingroup$
I am desperate in evaluating the following Hankel transform
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} frac{cosh(ky)}{cosh(k)} kmathrm{d} k,
$$
where $J_0(kr)$ is the Bessel function of the first kind and where the interest is focused on where $k$ is small.
By expanding the hyperbolic function about $k=0$,
$$
frac{cosh(ky)}{cosh(k)} = 1 + textit{O}(k^2),
$$
and the preceding integral reduces to
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k = K_0(xi r),
$$
where $K_0(xi r)$ is the modified Bessel function of the second kind.
The problem is the approximation for the hyperbolic function is valid only about $k=0$, while the integral is over the $kin(0,infty)$. How can I justify this controversy?
Or, perhaps it is acceptable to evaluate
$$
int_{0}^{1} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k,
$$
instead, but how to do this?
Thanking you and, please, could you help me...
Wang Zhe
definite-integrals bessel-functions integral-transforms
$endgroup$
add a comment |
$begingroup$
I am desperate in evaluating the following Hankel transform
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} frac{cosh(ky)}{cosh(k)} kmathrm{d} k,
$$
where $J_0(kr)$ is the Bessel function of the first kind and where the interest is focused on where $k$ is small.
By expanding the hyperbolic function about $k=0$,
$$
frac{cosh(ky)}{cosh(k)} = 1 + textit{O}(k^2),
$$
and the preceding integral reduces to
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k = K_0(xi r),
$$
where $K_0(xi r)$ is the modified Bessel function of the second kind.
The problem is the approximation for the hyperbolic function is valid only about $k=0$, while the integral is over the $kin(0,infty)$. How can I justify this controversy?
Or, perhaps it is acceptable to evaluate
$$
int_{0}^{1} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k,
$$
instead, but how to do this?
Thanking you and, please, could you help me...
Wang Zhe
definite-integrals bessel-functions integral-transforms
$endgroup$
I am desperate in evaluating the following Hankel transform
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} frac{cosh(ky)}{cosh(k)} kmathrm{d} k,
$$
where $J_0(kr)$ is the Bessel function of the first kind and where the interest is focused on where $k$ is small.
By expanding the hyperbolic function about $k=0$,
$$
frac{cosh(ky)}{cosh(k)} = 1 + textit{O}(k^2),
$$
and the preceding integral reduces to
$$
int_{0}^{infty} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k = K_0(xi r),
$$
where $K_0(xi r)$ is the modified Bessel function of the second kind.
The problem is the approximation for the hyperbolic function is valid only about $k=0$, while the integral is over the $kin(0,infty)$. How can I justify this controversy?
Or, perhaps it is acceptable to evaluate
$$
int_{0}^{1} frac{J_0(kr)}{k^2+xi^2} kmathrm{d} k,
$$
instead, but how to do this?
Thanking you and, please, could you help me...
Wang Zhe
definite-integrals bessel-functions integral-transforms
definite-integrals bessel-functions integral-transforms
edited Dec 17 '18 at 15:33
Zhe Wang
asked Dec 17 '18 at 10:20
Zhe WangZhe Wang
112
112
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043769%2fbessel-integral-invovling-algebraic-and-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043769%2fbessel-integral-invovling-algebraic-and-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown