How to prove one theorem related to Stoke`s theorem












1












$begingroup$


Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$



Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$



I can`t prove last equation, please help,



c is constant vector,
n is unit vector,
a and f are vector functions










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 17 '18 at 17:47












  • $begingroup$
    Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
    $endgroup$
    – SergeyFomin
    Dec 18 '18 at 20:41










  • $begingroup$
    And what is the "cross product" of vector $times$ operator?
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 19 '18 at 15:03










  • $begingroup$
    It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
    $endgroup$
    – SergeyFomin
    Dec 20 '18 at 8:09
















1












$begingroup$


Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$



Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$



I can`t prove last equation, please help,



c is constant vector,
n is unit vector,
a and f are vector functions










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 17 '18 at 17:47












  • $begingroup$
    Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
    $endgroup$
    – SergeyFomin
    Dec 18 '18 at 20:41










  • $begingroup$
    And what is the "cross product" of vector $times$ operator?
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 19 '18 at 15:03










  • $begingroup$
    It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
    $endgroup$
    – SergeyFomin
    Dec 20 '18 at 8:09














1












1








1


0



$begingroup$


Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$



Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$



I can`t prove last equation, please help,



c is constant vector,
n is unit vector,
a and f are vector functions










share|cite|improve this question











$endgroup$




Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$



Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$



I can`t prove last equation, please help,



c is constant vector,
n is unit vector,
a and f are vector functions







curl






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 6:33







SergeyFomin

















asked Dec 17 '18 at 10:56









SergeyFominSergeyFomin

1187




1187












  • $begingroup$
    $f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 17 '18 at 17:47












  • $begingroup$
    Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
    $endgroup$
    – SergeyFomin
    Dec 18 '18 at 20:41










  • $begingroup$
    And what is the "cross product" of vector $times$ operator?
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 19 '18 at 15:03










  • $begingroup$
    It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
    $endgroup$
    – SergeyFomin
    Dec 20 '18 at 8:09


















  • $begingroup$
    $f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 17 '18 at 17:47












  • $begingroup$
    Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
    $endgroup$
    – SergeyFomin
    Dec 18 '18 at 20:41










  • $begingroup$
    And what is the "cross product" of vector $times$ operator?
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Dec 19 '18 at 15:03










  • $begingroup$
    It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
    $endgroup$
    – SergeyFomin
    Dec 20 '18 at 8:09
















$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47






$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47














$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41




$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41












$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03




$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03












$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09




$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043801%2fhow-to-prove-one-theorem-related-to-stokes-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043801%2fhow-to-prove-one-theorem-related-to-stokes-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten