How to prove one theorem related to Stoke`s theorem
$begingroup$
Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$
Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$
I can`t prove last equation, please help,
c is constant vector,
n is unit vector,
a and f are vector functions
curl
$endgroup$
add a comment |
$begingroup$
Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$
Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$
I can`t prove last equation, please help,
c is constant vector,
n is unit vector,
a and f are vector functions
curl
$endgroup$
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09
add a comment |
$begingroup$
Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$
Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$
I can`t prove last equation, please help,
c is constant vector,
n is unit vector,
a and f are vector functions
curl
$endgroup$
Stock`s theorem $$ointlimits_C {{bf{a}} cdot {bf{dr}}} = iintlimits_S {nabla times {bf{a}}, cdot {bf{n}}dA}$$
Substituting ${bf{a}} = {bf{f}} times {bf{c}}$
we find that $$ointlimits_C {{bf{dr}} times {bf{f}}} = iintlimits_S {left( {{bf{n}} times nabla ,} right) times {bf{f}}dA}$$
since
${bf{n}} cdot left( {nabla times left( {{bf{f}} times {bf{c}}} right)} right) = {bf{c}} cdot left( {left( {{bf{n}} timesnabla } right) times {bf{f}}} right)
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYfdmGievaebbnrfi
% fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk
% 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9
% Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaey
% yXIC9aaeWaaeaadaWhcaqaaiabgEGirdGaay51GaGaey41aq7aaeWa
% aeaacaWHMbGaey41aqRaaC4yaaGaayjkaiaawMcaaaGaayjkaiaawM
% caaiabg2da9iaahogacqGHflY1daqadaqaamaabmaabaGaaCOBaiab
% gEna0oaaFiaabaGaey4bIenacaGLxdcaaiaawIcacaGLPaaacqGHxd
% aTcaWHMbaacaGLOaGaayzkaaaaaa!55F5!
$
I can`t prove last equation, please help,
c is constant vector,
n is unit vector,
a and f are vector functions
curl
curl
edited Dec 19 '18 at 6:33
SergeyFomin
asked Dec 17 '18 at 10:56
SergeyFominSergeyFomin
1187
1187
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09
add a comment |
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043801%2fhow-to-prove-one-theorem-related-to-stokes-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043801%2fhow-to-prove-one-theorem-related-to-stokes-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$f$ is a function? $n$ a unit vector? What is $ntimesnabla$? In any case it appears be a trivial (but long) calculation.
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 17 '18 at 17:47
$begingroup$
Yes, f is vector function, n is unit vector, $${bf{n}} times nabla % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOBaiabgE % na0kabgEGirdaa!3A8A! $$ is a cross product.
$endgroup$
– SergeyFomin
Dec 18 '18 at 20:41
$begingroup$
And what is the "cross product" of vector $times$ operator?
$endgroup$
– Martín-Blas Pérez Pinilla
Dec 19 '18 at 15:03
$begingroup$
It`s a vector operator ${bf{n}} times nabla = {n_i}{{{bf{hat e}}}_i} times {{{bf{hat e}}}_j}{partial _j} = {{{bf{hat e}}}_k}{varepsilon _{ijk}}{n_i}{partial _j}$
$endgroup$
– SergeyFomin
Dec 20 '18 at 8:09