If $T:Xto Y$ is a continuous linear map at the origin, then $T$ is Lipschitz












0












$begingroup$


Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.



Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}



HERE IS A PROOF



Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.



My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.



    Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}



    HERE IS A PROOF



    Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
    So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
    Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
    Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
    but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
    This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.



    My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.



      Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}



      HERE IS A PROOF



      Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
      So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
      Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
      Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
      but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
      This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.



      My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?










      share|cite|improve this question









      $endgroup$




      Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.



      Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}



      HERE IS A PROOF



      Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
      So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
      Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
      Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
      but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
      This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.



      My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?







      functional-analysis normed-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 17 '18 at 9:38









      Omojola MichealOmojola Micheal

      1,969324




      1,969324






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see Sir! Thanks! +1)
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:41












          • $begingroup$
            I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:43











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043732%2fif-tx-to-y-is-a-continuous-linear-map-at-the-origin-then-t-is-lipschitz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see Sir! Thanks! +1)
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:41












          • $begingroup$
            I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:43
















          1












          $begingroup$

          If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see Sir! Thanks! +1)
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:41












          • $begingroup$
            I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:43














          1












          1








          1





          $begingroup$

          If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.






          share|cite|improve this answer









          $endgroup$



          If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 9:40









          Kavi Rama MurthyKavi Rama Murthy

          66.7k52867




          66.7k52867












          • $begingroup$
            Oh, I see Sir! Thanks! +1)
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:41












          • $begingroup$
            I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:43


















          • $begingroup$
            Oh, I see Sir! Thanks! +1)
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:41












          • $begingroup$
            I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 9:43
















          $begingroup$
          Oh, I see Sir! Thanks! +1)
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 9:41






          $begingroup$
          Oh, I see Sir! Thanks! +1)
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 9:41














          $begingroup$
          I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 9:43




          $begingroup$
          I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 9:43


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043732%2fif-tx-to-y-is-a-continuous-linear-map-at-the-origin-then-t-is-lipschitz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten