If $T:Xto Y$ is a continuous linear map at the origin, then $T$ is Lipschitz
$begingroup$
Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.
Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}
HERE IS A PROOF
Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.
My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?
functional-analysis normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.
Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}
HERE IS A PROOF
Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.
My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?
functional-analysis normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.
Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}
HERE IS A PROOF
Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.
My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?
functional-analysis normed-spaces
$endgroup$
Let $X$ and $Y$ be normed linear spaces over a scalar field, and let $T:Xto Y$ be a linear map.
Suppose $T:Xto Y$ is a continuous at the origin, I want to show that $T$ is Lipschitz, i.e. there exists some constant $Kgeq 0,$ such that begin{align} Vert T(x) Vert leq KVert xVert ,;;forall;xin X. end{align}
HERE IS A PROOF
Suppose for contradiction, that $forall, nin Bbb{N},exists,x_nin X$ such $x_nneq 0$ and begin{align} Vert T(x_n) Vert > nVert x_nVert . end{align}
So, begin{align} frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
Define begin{align} u_n=frac{x_n}{nVert x_nVert} ,;;forall, nin Bbb{N}. end{align}
Then, begin{align} u_nto 0, ;;text{as} ;;ntoinfty, end{align}
but begin{align} Vert T(u_n) -0Vert=frac{Vert T(x_n) Vert}{nVert x_nVert} > 1 ,;;forall, nin Bbb{N}. end{align}
This implies that $T(u_n)notto 0, ;;text{as} ;;ntoinfty.$ Contadiction and we're done.
My question: Why must $x_nneq 0 ,;;forall, nin Bbb{N}$ at negation?
functional-analysis normed-spaces
functional-analysis normed-spaces
asked Dec 17 '18 at 9:38
Omojola MichealOmojola Micheal
1,969324
1,969324
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.
$endgroup$
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043732%2fif-tx-to-y-is-a-continuous-linear-map-at-the-origin-then-t-is-lipschitz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.
$endgroup$
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
add a comment |
$begingroup$
If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.
$endgroup$
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
add a comment |
$begingroup$
If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.
$endgroup$
If you chose $x_n$ such that $|Tx_n| >n|x_n|$ and $x_n=0$ you get $0>0$! So $x_n neq 0$ automatically.
answered Dec 17 '18 at 9:40
Kavi Rama MurthyKavi Rama Murthy
66.7k52867
66.7k52867
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
add a comment |
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
Oh, I see Sir! Thanks! +1)
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:41
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
$begingroup$
I believe I can still go directly and use the argument. Since $T(x_n)to 0,$ then it is bounded. This implies that it is Lipschitz. Right?
$endgroup$
– Omojola Micheal
Dec 17 '18 at 9:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043732%2fif-tx-to-y-is-a-continuous-linear-map-at-the-origin-then-t-is-lipschitz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown