Integral of $intfrac{sin x}{sin x+cos x}dx$












5












$begingroup$



The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$




I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$



But now i'm unsure on how to find just $I$










share|cite|improve this question









$endgroup$








  • 9




    $begingroup$
    If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
    $endgroup$
    – welshman500
    Dec 12 '18 at 17:36
















5












$begingroup$



The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$




I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$



But now i'm unsure on how to find just $I$










share|cite|improve this question









$endgroup$








  • 9




    $begingroup$
    If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
    $endgroup$
    – welshman500
    Dec 12 '18 at 17:36














5












5








5


1



$begingroup$



The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$




I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$



But now i'm unsure on how to find just $I$










share|cite|improve this question









$endgroup$





The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$




I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$



But now i'm unsure on how to find just $I$







integration trigonometric-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 12 '18 at 17:35









H.LinkhornH.Linkhorn

456113




456113








  • 9




    $begingroup$
    If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
    $endgroup$
    – welshman500
    Dec 12 '18 at 17:36














  • 9




    $begingroup$
    If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
    $endgroup$
    – welshman500
    Dec 12 '18 at 17:36








9




9




$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36




$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36










2 Answers
2






active

oldest

votes


















0












$begingroup$

what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Hint :



    Consider the following system of equations :



    $$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$



    See an easy way out for $I$ ?






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036992%2fintegral-of-int-frac-sin-x-sin-x-cos-xdx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      what you have is:
      $$I+J=x+C$$
      $$I-J=-ln|cos(x)+sin(x)|+C$$
      so:
      $$2I=x-ln|cos(x)+sin(x)|+C$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        what you have is:
        $$I+J=x+C$$
        $$I-J=-ln|cos(x)+sin(x)|+C$$
        so:
        $$2I=x-ln|cos(x)+sin(x)|+C$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          what you have is:
          $$I+J=x+C$$
          $$I-J=-ln|cos(x)+sin(x)|+C$$
          so:
          $$2I=x-ln|cos(x)+sin(x)|+C$$






          share|cite|improve this answer









          $endgroup$



          what you have is:
          $$I+J=x+C$$
          $$I-J=-ln|cos(x)+sin(x)|+C$$
          so:
          $$2I=x-ln|cos(x)+sin(x)|+C$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 19:44









          Henry LeeHenry Lee

          2,054219




          2,054219























              2












              $begingroup$

              Hint :



              Consider the following system of equations :



              $$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$



              See an easy way out for $I$ ?






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Hint :



                Consider the following system of equations :



                $$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$



                See an easy way out for $I$ ?






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Hint :



                  Consider the following system of equations :



                  $$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$



                  See an easy way out for $I$ ?






                  share|cite|improve this answer









                  $endgroup$



                  Hint :



                  Consider the following system of equations :



                  $$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$



                  See an easy way out for $I$ ?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 12 '18 at 17:45









                  RebellosRebellos

                  14.8k31248




                  14.8k31248






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036992%2fintegral-of-int-frac-sin-x-sin-x-cos-xdx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten