Integral of $intfrac{sin x}{sin x+cos x}dx$
$begingroup$
The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$
I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$
But now i'm unsure on how to find just $I$
integration trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$
I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$
But now i'm unsure on how to find just $I$
integration trigonometric-integrals
$endgroup$
9
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36
add a comment |
$begingroup$
The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$
I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$
But now i'm unsure on how to find just $I$
integration trigonometric-integrals
$endgroup$
The questions defines $$I=intfrac{sin x}{sin x +cos x}dx;;J=intfrac{cos x}{sin x +cos x}dx$$
It asked me to find $I+J$ and $J-I$ which I have done and I will show below but now I need to find the integral shown below and I'm unsure on what to do.
$$intfrac{sin x}{sin x+cos x}dx$$
I have found that:
$$I+J = x+c$$
$$J-I=ln{|cos x +sin x|} +c$$
But now i'm unsure on how to find just $I$
integration trigonometric-integrals
integration trigonometric-integrals
asked Dec 12 '18 at 17:35
H.LinkhornH.Linkhorn
456113
456113
9
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36
add a comment |
9
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36
9
9
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$
$endgroup$
add a comment |
$begingroup$
Hint :
Consider the following system of equations :
$$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$
See an easy way out for $I$ ?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036992%2fintegral-of-int-frac-sin-x-sin-x-cos-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$
$endgroup$
add a comment |
$begingroup$
what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$
$endgroup$
add a comment |
$begingroup$
what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$
$endgroup$
what you have is:
$$I+J=x+C$$
$$I-J=-ln|cos(x)+sin(x)|+C$$
so:
$$2I=x-ln|cos(x)+sin(x)|+C$$
answered Dec 12 '18 at 19:44
Henry LeeHenry Lee
2,054219
2,054219
add a comment |
add a comment |
$begingroup$
Hint :
Consider the following system of equations :
$$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$
See an easy way out for $I$ ?
$endgroup$
add a comment |
$begingroup$
Hint :
Consider the following system of equations :
$$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$
See an easy way out for $I$ ?
$endgroup$
add a comment |
$begingroup$
Hint :
Consider the following system of equations :
$$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$
See an easy way out for $I$ ?
$endgroup$
Hint :
Consider the following system of equations :
$$begin{cases} J+I = x+c \ J - I = ln|cos x + sin x | + cend{cases}$$
See an easy way out for $I$ ?
answered Dec 12 '18 at 17:45
RebellosRebellos
14.8k31248
14.8k31248
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036992%2fintegral-of-int-frac-sin-x-sin-x-cos-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9
$begingroup$
If you know what $J-I$ is, you know what $I-J$ is. Try adding $I-J$ and $I+J$ together.
$endgroup$
– welshman500
Dec 12 '18 at 17:36