Proof using Cauchy's Integral Formula












1












$begingroup$


let $f: Omega rightarrow mathbb{C}$ be analytic and $z_0 in mathbb{C}$.



Define
$$g(z) = begin{cases}
frac{f(z)-f(z_0)}{z- z_0} & z not = z_0 \
f'(z_0) & z = z_0
end{cases}$$



now pick $varepsilon$ small enough so that $overline{D(z_0, varepsilon)} subset Omega$



Show that whenever $z in D(z_0, varepsilon)$



$$frac{g(z) - g(z_0)}{z-z_0} = frac{1}{2pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta$$



My question is if my proof below, which makes use of the Cauchy integral formula is correct



We can write $frac{g(z) - g(z_0)}{z-z_0} = frac{frac{f(z)-f(z_0)}{z- z_0}-f'(z_0)}{z-z_0} = frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0}$



now as epsilon gets arbitrarily small, $z rightarrow z_0$ and so now making use of the Cauchy integral formula and the fact that $lim_{z rightarrow z_0} frac{f(z_0)}{z-z_0} = 0$ we should have



$$lim_{z rightarrow z_0} frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0} = frac{1}{2 pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta - 0$$



which gives us the result










share|cite|improve this question











$endgroup$












  • $begingroup$
    The problem has been solved here: math.stackexchange.com/questions/3037532/…
    $endgroup$
    – Richard Villalobos
    Dec 13 '18 at 22:00


















1












$begingroup$


let $f: Omega rightarrow mathbb{C}$ be analytic and $z_0 in mathbb{C}$.



Define
$$g(z) = begin{cases}
frac{f(z)-f(z_0)}{z- z_0} & z not = z_0 \
f'(z_0) & z = z_0
end{cases}$$



now pick $varepsilon$ small enough so that $overline{D(z_0, varepsilon)} subset Omega$



Show that whenever $z in D(z_0, varepsilon)$



$$frac{g(z) - g(z_0)}{z-z_0} = frac{1}{2pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta$$



My question is if my proof below, which makes use of the Cauchy integral formula is correct



We can write $frac{g(z) - g(z_0)}{z-z_0} = frac{frac{f(z)-f(z_0)}{z- z_0}-f'(z_0)}{z-z_0} = frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0}$



now as epsilon gets arbitrarily small, $z rightarrow z_0$ and so now making use of the Cauchy integral formula and the fact that $lim_{z rightarrow z_0} frac{f(z_0)}{z-z_0} = 0$ we should have



$$lim_{z rightarrow z_0} frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0} = frac{1}{2 pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta - 0$$



which gives us the result










share|cite|improve this question











$endgroup$












  • $begingroup$
    The problem has been solved here: math.stackexchange.com/questions/3037532/…
    $endgroup$
    – Richard Villalobos
    Dec 13 '18 at 22:00
















1












1








1





$begingroup$


let $f: Omega rightarrow mathbb{C}$ be analytic and $z_0 in mathbb{C}$.



Define
$$g(z) = begin{cases}
frac{f(z)-f(z_0)}{z- z_0} & z not = z_0 \
f'(z_0) & z = z_0
end{cases}$$



now pick $varepsilon$ small enough so that $overline{D(z_0, varepsilon)} subset Omega$



Show that whenever $z in D(z_0, varepsilon)$



$$frac{g(z) - g(z_0)}{z-z_0} = frac{1}{2pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta$$



My question is if my proof below, which makes use of the Cauchy integral formula is correct



We can write $frac{g(z) - g(z_0)}{z-z_0} = frac{frac{f(z)-f(z_0)}{z- z_0}-f'(z_0)}{z-z_0} = frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0}$



now as epsilon gets arbitrarily small, $z rightarrow z_0$ and so now making use of the Cauchy integral formula and the fact that $lim_{z rightarrow z_0} frac{f(z_0)}{z-z_0} = 0$ we should have



$$lim_{z rightarrow z_0} frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0} = frac{1}{2 pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta - 0$$



which gives us the result










share|cite|improve this question











$endgroup$




let $f: Omega rightarrow mathbb{C}$ be analytic and $z_0 in mathbb{C}$.



Define
$$g(z) = begin{cases}
frac{f(z)-f(z_0)}{z- z_0} & z not = z_0 \
f'(z_0) & z = z_0
end{cases}$$



now pick $varepsilon$ small enough so that $overline{D(z_0, varepsilon)} subset Omega$



Show that whenever $z in D(z_0, varepsilon)$



$$frac{g(z) - g(z_0)}{z-z_0} = frac{1}{2pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta$$



My question is if my proof below, which makes use of the Cauchy integral formula is correct



We can write $frac{g(z) - g(z_0)}{z-z_0} = frac{frac{f(z)-f(z_0)}{z- z_0}-f'(z_0)}{z-z_0} = frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0}$



now as epsilon gets arbitrarily small, $z rightarrow z_0$ and so now making use of the Cauchy integral formula and the fact that $lim_{z rightarrow z_0} frac{f(z_0)}{z-z_0} = 0$ we should have



$$lim_{z rightarrow z_0} frac{f(z)-f(z_0)}{(z- z_0)^2} - frac{f'(z_0)}{z-z_0} = frac{1}{2 pi i}int_{D(z_0, varepsilon)}frac{f(zeta)}{(zeta-z)(zeta-z_0)^2}dzeta - 0$$



which gives us the result







complex-analysis cauchy-integral-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 17:34







Richard Villalobos

















asked Dec 12 '18 at 17:27









Richard VillalobosRichard Villalobos

1757




1757












  • $begingroup$
    The problem has been solved here: math.stackexchange.com/questions/3037532/…
    $endgroup$
    – Richard Villalobos
    Dec 13 '18 at 22:00




















  • $begingroup$
    The problem has been solved here: math.stackexchange.com/questions/3037532/…
    $endgroup$
    – Richard Villalobos
    Dec 13 '18 at 22:00


















$begingroup$
The problem has been solved here: math.stackexchange.com/questions/3037532/…
$endgroup$
– Richard Villalobos
Dec 13 '18 at 22:00






$begingroup$
The problem has been solved here: math.stackexchange.com/questions/3037532/…
$endgroup$
– Richard Villalobos
Dec 13 '18 at 22:00












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036981%2fproof-using-cauchys-integral-formula%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036981%2fproof-using-cauchys-integral-formula%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Le Mesnil-Réaume

Bundesstraße 106

Ida-Boy-Ed-Garten